求极限-函数
极限运算法则
有界函数与无穷小的乘积是无穷小
xinx * 0 = 0
极限的结果类型
无穷比无穷型
方法1 抓大头
方法2 洛必达
洛必达法则的使用条件
-
一是分子分母的极限是否都等于零〔或者无穷大〕;
-
二是分子分母在限定的区域内是否分别可导;
-
三是假如这两个条件都满足,接着求导并判断求导之后的极限是否存在
零比零型
方法1 无穷小的等价替换
条件
高数 | 【极限与等价无穷小】等价无穷小量的替换及加减替换条件_等价无穷小加减法使用条件-CSDN博客
①被替换的量,必须是无穷小量(在取极限时为0)
②被替换的量,必须是作为被乘或被除的元素,不能是被加减的元素。
③替换时必须整体替换,而不能替换局部
eg
方法2 洛必达
1的无穷大型
方法1 课程公式 第二个重要极限
当指数比较复杂无法得出结果时 考虑 分离常数
方法2
推导关键 ln(+1)=
推导
eg
0乘以无穷大型
无穷大 减去 无穷大
方法 通分
eg
无穷小比a 等于 无穷小
a 比 无穷大 型 无穷大
因为其倒数的极限为无穷小所以他本身为无穷大
其他题型
求极限——左右极限 极限是否存在
eg
求极限——已知f'(x)=?,求某极限
方法 公式

扩展点
- arcsinx的反函数 为 y=sinx
- 基本初等函数在其定义域内极限值等于函数值
- 1-X^3=(1-X)(1+X+X^2)
概念
极限
极限的四则运算条件
有限个 极限都存在 分母极限不为0
无穷小的比较
间断点
求极限——数列
分析an的取值范围
做题步骤
连续
证明f(x)在某点连续
导数
导数存不存在
隐函数求导
做题步骤
eg
参数方程求导
公式
推导过程
eg
求极值、最值
做题步骤
eg
列表示例
求凹凸区间与拐点
eg
拐点是一个点
拉格朗日中值定理
不定积分
三角函数的降幂公式:cos²α=(1+cos2α)/2;sin²α=(1-cos2α)/2;tan²α=(1-cos2α)/(1+cos2α)。
第一类换元法
做题步骤
eg
积出来的结果记得+C
第二类换元积分法
主要是用来去根号
利用三角函数公式
分布积分法
反 对 幂 三 指
前为u 后为v
定积分
普通定积分
eg
求园
变限积分
公式
华理士公式
向量代数
两向量叉乘 结果为其 平面的法向量
微分方程
解微分方程 = 求原函数
对t求导涉及复合函数求导
一阶线性方程求通解
二阶常系数线性方程
多元函数微分
偏导数
已知曲面方程 曲面一点的法向量
隐式
显式
全微分
多元隐函数求偏导
多元函数求极值
拉格朗日数乘法求条件极值
二重积分
三重积分
先二后一
曲线积分与曲面积分
格林公式
无穷级数