P5839-图论-Floyd算法

在搜索中bfs只适合无权图

若是碰到有权图最简单的方法就是用邻接矩阵-二维矩阵存储每个点对之间的权重,然后用floyd

1.邻接矩阵

如果是二维输入权值的话直接append就好了

ma=[]

for i in range(m):
    ma.append(list(map(int,input().split())))

点对输入情况的:

INF初始化定义没有边无法到达

然后对每个点到自己定义为0,也就是没距离

同时用min读入来处理重边(i到j不止一条路,那么优先选短的)

INF=float('inf')
ma=[[INF]*n for _ in range(n)]

for i in range(n):
    ma[i][i]=0

for i in range(m):
    a,b,c=map(int,input().split())
    ma[a-1][b-1]=min(ma[a-1][b-1],c)
    ma[b-1][a-1]=min(ma[b-1][a-1],c)

2.floyd算法

本质其实是动态规划

ma数组存储的是每个点之间的直接距离,并没有考虑从中节点经过的情况

那么我们只需要再枚举在 i、j 点之间的所有可能点k,用min存储更小的途径

def floyd(ma):
    for k in range(m):
        for i in range(m):
            for j in range(m):
                ma[i][j]=min(ma[i][j],ma[i][k]+ma[k][j])
    return ma

如果原来的ma数组还会用到,那么最好复制一下ma 

        d=[[ma[i][j] for j in range(m)] for i in range(m)]

注意:不能用dist=ma.copy()

因为二维数组的浅拷贝会导致对拷贝体做更改的时候会影响本体

a=[1,2,3]
a2=a.copy()
a2.append(4)
print(a,a2)

print()

b=[[1,2],[3]]
b2=b.copy()
b2[1].append(4)
print(b,b2)

'''输出
[1,2,3] [1,2,3,4]
[[1,2],[3,4]] [[1,2],[3,4]] 
'''

 P5839

P5839 [USACO19DEC] Moortal Cowmbat G - 洛谷

首先我们跑一边floyd得出最小代价

INF = float('inf')

n, m, k = map(int, input().split())
s = input()
ma = [list(map(int, input().split())) for _ in range(m)]

def floyd(ma):
    d = [[ma[i][j] for j in range(m)] for i in range(m)]
    for k in range(m):
        for i in range(m):
            for j in range(m):
                d[i][j] = min(d[i][j], d[i][k] + d[k][j])
    return d

d = floyd(ma)

后面就是得规划我们该如何变我们的字符串

dp状态: F[ i ]表示到i位置全部合法的最小代价

dp转移: F[ i ]=F[ j ]+k( i,j )        其中k( i,j )表示 i 到 j 全部改为一种颜色的最小代价,这里可以用前缀和进行预处理


#前缀和
su = [[0]*(n+1) for i in range(m)]

for i in range(m):
    for j in range(1, n+1):  # 从1开始到n
        su[i][j] = su[i][j-1] + d[ord(s[j])-ord('a')][i]

f = [INF]*(n+1)
f[0] = 0
mx = [0]*m
for i in range(k, n+1):
    for col in range(m):
        mx[col] = max(mx[col], su[col][i-k]-f[i-k])
    for col in range(m):
        f[i] = min(f[i], su[col][i]-mx[col])
print(f[n])

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值