代码(先看题,在看代码)
数位统计(递推模板--比较好理解)
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 15;
ll ten[N], dp[N];
ll cnta[N], cntb[N];
int num[N];
/*
1位数:每种数字有1个
2位数:每种数字有20个
3位数:每种数字有300个
4位数:每种数字有4000个
*/
void init() { // 预处理10的n次方
ten[0] = 1;
for (int i = 1; i <= N; i++) {
ten[i] = 10 * ten[i - 1];
dp[i] = dp[i - 1] * 10 + ten[i - 1];
}
}
void solve(ll x, ll *cnt) {
// 分离数位
int len = 0;
while (x) {
num[++len] = x % 10;
x /= 10;
}
// 遍历处理每个数位
for (int i = len; i >= 1; i--) {
// 4321 的 1000 * 4 带来的贡献
for (int j = 0; j <= 9; j++) { // 处理每个数字的个数
cnt[j] += dp[i - 1] * num[i]; // 每个数字的个数等于前面的贡献 乘 当前这个数位 比如: 1000 * 5
} // 1000 就是前面的贡献(1000里面有多少个这个数字) * 我有几个1000
// 4321 的 4XXX 3XXX 2XXX 带来的贡献
for (int j = 0; j < num[i]; j++) {
cnt[j] += ten[i - 1];
}
// 4321 的 321 带来的贡献 322 个 4
ll num2 = 0;
for (int j = i - 1; j >= 1; j--) {
num2 = num2 * 10 + num[j];
}
cnt[num[i]] += num2 + 1;
// 减去 0XXX 中多的贡献
cnt[0] -= ten[i - 1];
}
}
int main() {
init();
ll a, b; cin >> a >> b;
solve(a - 1, cnta), solve(b, cntb);
for (int i = 0; i <= 9; i++) {
cout << cntb[i] - cnta[i] << ' ';
}
}
数位统计(递归模板,比较不好理解,但是很常用)
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 15;
ll dp[N][N];
int num[N], now; // now:当前统计0~9中的哪一个数字,相比于递推模板,它属于要算哪个调用哪个
// 而递推模板是一次性全部算出来的
// 递归模板的参数和递推模板的维度很像的,多多感悟。
// 而且递归都是先找到叶子节点,然后再迭代回来根节点进行操作的
ll dfs(int pos, int sum, bool lead, bool limit) {
ll ans = 0;
if (pos == 0) return sum; // 遍历到空节点,然后返回一路走来的now的个数
// 不是领头的 没有被限制 统计过了
if (!lead && !limit && dp[pos][sum] != -1) return dp[pos][sum]; // 记忆化搜索
// 开始从小找到最高位,目的是得到他们的下一个数位的,下面以now = 2为例
int up = (limit ? num[pos] : 9);
for (int i = 0; i <= up; i++) {
// 计算 000 ——— 099 (这个数是0,并且领头,也就是说,后面00 - 99 的都可以加上来)
if (i == 0 && lead) {
ans += dfs(pos - 1, sum, true, limit && i == up); // 如果i是up的话,就说明后面的不能
}
// 计算200 —— 299
else if (i == now) {
ans += dfs(pos - 1, sum + 1, false, limit && i == up);
}
// 计算 100 —— 199
else if (i != now) {
ans += dfs(pos - 1, sum, false, limit && i == up);
}
}
// 状态记录:不是领头,没有限制
if (!lead && !limit) dp[pos][sum] = ans;
return ans; // dp[pos][sum]表示当前数位为pos,然后前面为now的数位有sum个的情况
}
/*
由于比较难理解,可以画一颗树,然后慢慢推导
1、dp是什么含义
dp的pos表示深度,sum表示前面的贡献
2、状态转移方程
dp[pos][sum] = dp[pos - 1][sum]的和 如果某一个pos的值==now,那么它的孩子的sum + 1,
*/
ll solve(ll x) {
// 分离数位
int len = 0;
while (x) {
num[++len] = x % 10;
x /= 10;
}
// 初始化啊,因为一次只能统计一个
memset(dp, -1, sizeof dp);
// 开始
return dfs(len, 0, true, true);
}
int main() {
ll a; cin >> a;
now = 2;
cout << solve(a);
// ll a, b; cin >> a >> b;
// for (int i = 0; i < 10; i++) {
// now = i;
// cout << solve(b) - solve(a - 1) << ' ';
// }
return 0;
}
(另一份)
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 15;
ll dp[N][N][2][2];
int num[N], now;
// 递归模板的参数和递推模板的维度很像的,多多感悟。
// 而且递归都是先找到叶子节点,然后再迭代回来根节点进行操作的
// sum的作用是贡献,pos的作用是定位,lead的作用是 023 和 1023 的情况 limit 是 324 和 224 的情况(最高时324,所以在百位为3时十位最高取2,224就没有限制)
ll dfs(int pos, int sum, bool lead, bool limit) {
ll ans = 0;
// 返回贡献
if (pos == 0) return sum;
// 查询过这个,返回
if (dp[pos][sum][limit][lead] != -1) return dp[pos][sum][limit][lead];
// 遍历所有的分支
int up = (limit ? num[pos] : 9);
for (int i = 0; i <= up; i++) {
if (i == 0 && lead) {
ans += dfs(pos - 1, sum, true, limit && i == up);
}
else if (i == now) {
ans += dfs(pos - 1, sum + 1, false, limit && i == up);
}
else if (i != now) {
ans += dfs(pos - 1, sum, false, limit && i == up);
}
}
// 记忆化
dp[pos][sum][limit][lead] = ans;
return ans;
}
// 得到数量
ll solve(ll x) {
// 分离数位
int len = 0;
while (x) {
num[++len] = x % 10;
x /= 10;
}
// 初始化啊,因为一次只能统计一个
memset(dp, -1, sizeof dp);
// 开始
return dfs(len, 0, true, true);
}
int main() {;
// 输入数据
ll a, b; cin >> a >> b;
// 遍历搜索
for (int i = 0; i < 10; i++) {
now = i;
cout << solve(b) - solve(a - 1) << ' ';
}
return 0;
}
原理
这个很难啊,需要多做题。这里只是个模板。
核心
相比于从a到b枚举每一个数来判断这个数是否满足这个条件,使用数位dp来判断每一个数位上面的情况,可以有效减少枚举量
重点是数位递归模板的参数。
题目
1、数位统计(洛谷p2602,poj2282)
2、windy数 洛谷p2657
3、手机号码 洛谷p4124
练习:
洛谷p 4798 3281 2518 3286 4999
poj 3252