用有限差分方法求解一维热方程(附matlab代码)

ac5caead382847fb8aef6f95119a81b0.jpg

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
一维传导方程的数学模型为: $$\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2}$$ 其中,$u(x,t)$ 表示传导的温度分布,$\alpha$ 为扩散系数。 采用差分法求解一维传导方程,可以将空间和时间离散化,得到如下差分方程: $$\frac{u_{i,j+1}-u_{i,j}}{\Delta t} = \alpha \frac{u_{i+1,j}-2u_{i,j}+u_{i-1,j}}{(\Delta x)^2}$$ 其中,$u_{i,j}$ 表示在第 $j$ 个时间步长时,$x=i\Delta x$ 处的温度值。 按照差分方程进行迭代计算,即可得到数值解。 下面是使用 MATLAB 求解一维传导方程代码示例: ```matlab % 设置参数 L = 1; % 区间长度 T = 0.1; % 求解时间 alpha = 0.01; % 扩散系数 dx = 0.01; % 空间步长 dt = 0.0001; % 时间步长 x = 0:dx:L; % 空间网格 t = 0:dt:T; % 时间网格 m = length(x); % 空间网格数 n = length(t); % 时间网格数 % 初始化边界条件和初始条件 u = zeros(m,n); u(1,:) = 0; % 左边界 u(m,:) = 0; % 右边界 u(:,1) = sin(pi*x/L); % 初始条件 % 迭代计算 for j = 1:n-1 for i = 2:m-1 u(i,j+1) = u(i,j) + alpha*dt/(dx^2)*(u(i+1,j)-2*u(i,j)+u(i-1,j)); end end % 绘图 for j = 1:n plot(x,u(:,j)); axis([0 L -1 1]); xlabel('x'); ylabel('u'); drawnow; end ``` 在上述代码中,使用了显式差分法进行迭代计算。需要注意的是,显式差分法的稳定性条件为: $$\frac{\alpha \Delta t}{(\Delta x)^2} \leq \frac{1}{2}$$ 因此,需要根据求解的具体情况选择合适的时间步长和空间步长。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值