如何写好prompt以及评测prompt的好坏

引言

       在编写Prompt时,目标是明确、具体地指引AI生成符合期望的输出。以下是一些编写和改进Prompt的经验:

Prompt书写经验

       明确性: 确保你的Prompt清晰、具体。模糊或广泛的描述可能导致不一致的输出。同时尽量避免否定句法。

       上下文: 提供足够的背景信息以帮助AI理解你想要的结果。示例:如果在写小说角色介绍,说明角色的年龄、背景和主要冲突。

       结构化: 使用简单的句子和逻辑结构传达要求。

示例: 对于复杂任务,可以将要求分成几个步骤列出。通过few shot的方式,让大模型加深我们对于任务目标的理解,同时,告诉大模型我们的期望输出样式是什么样子的。

       限制与要求: 定义输出的限制或格式,比如字数、风格、语言等。比如限定为json输出、list输出等。

prompt评价标准

       一致性: 在采用对应的prompt多次调用后,输出是否保持一致性。

       相关性: 出的内容是否与我们在prompt里提供的上下文背景等内容相关。

       完整性: 输出是否回答完整,是否出现断句,没有回复全的情况。

       预期性: 大模型的输出是否符合我们的预期。

改进Prompt的方法

       观察输出: 查看大模型生成的文本,判断偏离预期的地方。策略: 增加或修改Prompt中的细节和背景信息以减少偏差。

       拆分任务: 如果任务复杂,将其分解为多个简单任务,并采用多个Prompt解决。策略:例如,先生成大纲,然后根据大纲生成具体内容。

       测试与迭代: 鼓励多次实验,尝试不同的措辞和格式。策略:记录不同版本的Prompt及其对应结果,以便比较、优化。

### 关于Prompt评估的关键指标和评测标准 #### 8.1 可理解性评估的重要性 在AI语言模型的提示词评估中,可理解性是一个至关重要的指标。这一特性不仅影响用户体验还决定了模型能否被广泛接纳[^1]。 #### 评价指标体系中的六个方面 对于大型神经网络模型而言,存在多个用于衡量其表现力的关键参数。具体来说: - **准确性**:类似于射击比赛里的命中率,指模型预测结果与实际值之间的吻合度。 - **召回率/覆盖范围**:如同图书馆管理员查找书籍的能力,表示模型能够识别并回应的相关信息量。 - **F1分数**:结合了精度和召回率的一种综合测量方式,好比是篮球比赛中得分效率的最佳体现。 - **困惑度(Perplexity)**:可以想象成面对复杂迷宫时感到迷茫的程度,用来量化模型对新数据的理解难度。 - **BLEU分(Bilingual Evaluation Understudy Score)**:就像翻译官的工作一样,比较机器生成文本同参考译文间的相似性。 - **ROUGE分(Recall-Oriented Understudy for Gisting Evaluation)**:侧重考察摘要提取的质量,即总结能力如何贴近原文主旨[^2]。 #### 流畅性的考量 除了上述技术层面的标准外,还有必要关注由LLM产生的内容是否具备良好的语言流畅性。这涉及到语法无误、句式合理以及词汇运用得当等方面,确保最终产出物听起来顺耳且易于读者接受[^3]。 ```python def evaluate_prompt(prompt_text, model_output): """ 对给定的prompt及其对应的model output进行全面评估 参数: prompt_text (str): 输入的原始指令字符串 model_output (str): 模型基于该指令所生成的结果 返回: dict: 各项评分详情字典对象 """ scores = { "understandability": None, "accuracy": None, "recall_coverage": None, "f1_score": None, "perplexity": None, "bleu_score": None, "rouge_score": None, "fluency": None } # 实现具体的计算逻辑... return scores ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值