NL2SQL技术方案系列(3):大模型工具调用实战NL2API技术方案以及行业案例讲解1

本文介绍了NL2API技术在智能理财助手中的应用,重点讨论了如何利用大模型进行结构化检索,包括NL2SQL、API调用策略以及推理加速方案。文中提出了一种新的API调用表达形式,并分享了数据集构建、统一API协议、多API编排和推理加速的具体方法,展示了大模型在金融信息服务中的实际应用和挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【资源介绍】 1、该资源包括项目的全部源码,下载可以直接使用! 2、本项目适合作为计算机、数学、电子信息等专业的课程设计、期末大作业和毕设项目,也可以作为小白实战演练和初期项目立项演示的重要参考借鉴资料。 3、本资源作为“学习资料”如果需要实现其他功能,需要能看懂代码,并且热爱钻研和多多调试实践。 基于LLM大语言模型意图识别、参数抽取结合slot词槽技术实现多轮问答、NL2API. 打造Function Call多轮问答最佳实践.zip 基于LLM大语言模型意图识别、参数抽取结合slot词槽技术实现多轮问答、NL2API. 打造Function Call多轮问答最佳实践.zip 基于LLM大语言模型意图识别、参数抽取结合slot词槽技术实现多轮问答、NL2API. 打造Function Call多轮问答最佳实践.zip 基于LLM大语言模型意图识别、参数抽取结合slot词槽技术实现多轮问答、NL2API. 打造Function Call多轮问答最佳实践.zip 基于LLM大语言模型意图识别、参数抽取结合slot词槽技术实现多轮问答、NL2API. 打造Function Call多轮问答最佳实践.zip 基于LLM大语言模型意图识别、参数抽取结合slot词槽技术实现多轮问答、NL2API. 打造Function Call多轮问答最佳实践.zip 基于LLM大语言模型意图识别、参数抽取结合slot词槽技术实现多轮问答、NL2API. 打造Function Call多轮问答最佳实践.zip 基于LLM大语言模型意图识别、参数抽取结合slot词槽技术实现多轮问答、NL2API. 打造Function Call多轮问答最佳实践.zip 基于LLM大语言模型意图识别、参数抽取结合slot词槽技术实现多轮问答、NL2API. 打造Function Call多轮问答最佳实践.zip 基于LLM大语言模型意图识别、参数抽取结合slot词槽技术实现多轮问答、NL2API. 打造Function Call多轮问答最佳实践.zip 基于LLM大语言模型意图识别、参数抽取结合slot词槽技术实现多轮问答、NL2API. 打造Function Call多轮问答最佳实践.zip 基于LLM大语言模型意图识别、参数抽取结合slot词槽技术实现多轮问答、NL2API. 打造Function Call多轮问答最佳实践.zip
### 关于NL2SQL的大语言模型 #### NL2SQL大语言模型简介 自然语言到结构化查询(NL2SQL)是指将自然语言转换成可以被数据库理解并执行的SQL语句的技术。随着大型语言模型(LLM)的发展,这一领域取得了显著进步。LLM具备强大的语言处理能力,能够更精准地解析复杂的自然语言指令,并将其转化为对应的SQL命令[^3]。 #### LLM在NL2SQL中的应用特点 - **增强的理解力**:相比传统基于模板的方法,LLM能更好地捕捉用户意图背后的细微差别,从而提高翻译准确性。 - **灵活性增加**:通过调整输入给定的提示词或上下文环境,可以使同一个模型适应不同类型的数据库架构以及多样化的查询需求。 - **自动化程度加深**:借助预训练好的大规模参数量级网络权重,在少量样本条件下即可完成特定场景下的快速适配与优化工作,降低了开发成本及时效性风险。 #### 实现方式概述 为了使LLM有效地服务于NL2SQL任务,通常会经历以下几个方面的工作: 1. 数据准备阶段收集大量高质量的人工编写的问答对作为监督信号用于后续微调过程; 2. 构建适合目标领域的Prompt Engineering方案以指导模型生成合理的输出形式; 3. 对通用版LLM实施针对性迁移学习策略,比如采用few-shot learning机制仅需少数实例就能让其掌握新的映射关系[^2]。 4. 集成外部工具如向量数据库辅助检索相似案例加速推理速度的同时提升整体性能表现[^1]。 ```python def generate_sql_query(prompt, model): """ 使用指定的prompt和model来生成SQL查询 参数: prompt (str): 自然语言描述的问题 model : 已经加载好权重的大型语言模型 返回: str: 转换后的SQL查询字符串 """ sql_output = model.generate(text_inputs=prompt) return post_process(sql_output) # 假设有一个已经训练完毕的模型instance 'llm_model' natural_language_input = "查找年龄大于等于18岁的学生姓名" generated_sql = generate_sql_query(natural_language_input, llm_model) print(generated_sql) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

汀、人工智能

十分感谢您的支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值