BERT在预训练阶段,需要如何处理数据集?

引言

       在BERT的预训练阶段,需要对数据集进行特定的处理,以生成适用于 Masked Language Modeling(MLM)和 Next Sentence Prediction(NSP)任务的数据。以下是详细的步骤和方法:

1. 原始文本数据的准备

       首先,需要收集大量的无标签纯文本数据,例如:

1.维基百科:涵盖广泛主题的百科全书式文本。
2.BooksCorpus:包含多种类型的书籍文本。
3.新闻文章、网络论坛、故事等其他来源的文本。

这些文本应该是多样化的,涵盖不同的领域,以帮助模型学习丰富的语言表示。

2. 文本的预处理

       在对文本进行预处理时,需要完成以下步骤:

2.1. 分句

目的:将文本划分为独立的句子,便于后续的NSP任务。
方法:使用句子分割工具,基于标点符号(如句号、问号、感叹号)进行分割。
注意:确保分句准确,避免将句子截断或合并。

2.2. 分词

目的:将句子划分为词或子词单元,便于模型处理。
方法:使用WordPiece分词器(BERT采用的分词方法)。
步骤:
对句子进行基本的分词处理。
使用词汇表(vocab.txt)将词映射为子词或标记。

2.3. 添加特殊标记

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值