自动控制原理
自动控制原理-第七版:点击我
密码 6666
一、基本原理与方式
**自动控制系统:**目的是为了完成复杂的控制任务,将被控制对象和控制装置按照一定的方式连接起来,组成一个有机总体。
反馈控制原理: 控制装置对于被控对象施加的控制作用,是取自被控量的反馈信息,用来不断修正被控量与输入量之间的偏差,从而是实现被控对象进行控制任务。
关键词解释:
- 输入信号:自动控制系统中某一部件的变化量
- 反馈信息:将输入信号给予信号处理单元的信息
- 信号偏差:在自动控制系统中超过期望值范围所产生的变化量
- 反馈:输入信号和输出信号之间比较产生信号偏差的过程
- 负反馈:反馈的信号与输入信号相减,使产生的偏差越来越小。
- 正反馈:反馈的信号与输入信号相减,使产生的偏差越来越大。
**反馈控制系统的基本组成:**测量元件、给定元件、比较元件、放大元件、执行元件、矫正元件(补偿元件)。
自动控制系统基本控制方式:
- **闭环控制:**又名反馈控制两者概念 可以互换使用,反馈控制是基于系统输出的反馈信息来调整输入,以实现对系统的有效控制。闭环控制是控制系统根据控制对象输出的反馈信息来进行调整和控制,以使控制对象的输出达到预期目标。
- **开环控制:**控制装置与被控对象之间只有顺向作用而没有反向联系的控制过程。(对于信号输入量进行处理之后,不会进行反馈,直接根据预定值得大小进行处理)
- **复合控制:**补充扰动控制方式的局限性,且因补偿装置只能针对一种形式,为了弥补缺陷将偏差控制与扰动控制结合起来组成反馈控制系统实现按偏差控制。(实质上结合的开环和闭环在获取信号输入的方式)
二、系统示例
开环控制
现实生活中:比如工厂产线中的自动化设备、自动洗衣机、自动售货机等等,按照特定的程序步骤执行
闭环控制
现实生活中:具备力反馈机制的伺服电机等等
三、基本要求
自动控制系统的基本要求:
(1) 稳定性
稳定性是保证控制系统正常工作的先决条件,对于稳定恒值控制系统,被控量因扰动而偏离期望值之后,经过一段时间的过渡(过渡阶段),被控量应恢复到原来期望值状态。
重点:线性自动控制系统的稳定性是由系统结构和参数构成的,与外界因素无关。
(2)快速性
对于特别的任务的控制系统,需要进行进一步处理,仅仅满足系统稳定性远远不够,在其过程中对其过渡过程的形式和快慢需要提出要求,称之为:动态性能。
(3)准确性
对于控制系统的精度评判标准,由于系统结构、外作用形式以及摩擦、间隙等非线性因素的影响,被控量的稳态值与期望值之间会有误差存在,称之为稳态误差。
以上是系统内在因素
系统被控量的变化情况各不相同:
- 阶跃函数
f ( t ) = { 0 , t >0 R , t >=0 f(t) = \begin{cases} 0, &\text{$t$>0}\\ R, &\text{$t$>=0} \end{cases} f(t)={0,R,t>0t>=0
阶跃函数主要凸显出:系统运行过程中突然遇见某种外力作用下产生变化
- 斜坡函数
f ( t ) = { 0 , t >0 R t , t >=0 f(t) = \begin{cases} 0, &\text{$t$>0}\\ Rt, &\text{$t$>=0} \end{cases} f(t)={0,Rt,t>0t>=0
主要适用于随动系统,比如雷达-高射炮系统
- 脉冲函数
f ( t ) = lim n → t 0 A t 0 [ l ( t ) − l ( t − t 0 ) ] f(t) =\lim_{n \to t0} \frac{A}{t0}[l(t)-l(t-t0)] f(t)=n→t0limt0A[l(t)−l(t−t0)]
- 正弦函数
f ( t ) = A sin ( ω t − φ ) f(t)=A \sin(\omega t-\varphi) f(t)=Asin(ωt−φ)
对于一些特定的系统而言,主要应用于舰船的消摆运动等
四、总结