将导体和分层球体的散射场计算为通过Mie级数计算导体(PEC)和分层介电球体的散射场,计算通过Mie级数计算导体(PEC)和分层介电球体的散射场(Matlab代码实现)

  💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

对于导体(PEC)球体:

对于分层介电球体:

实施步骤简述:

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

将导体和分层球体的散射场计算为通过Mie级数计算导体(PEC)和分层介电球体的散射场,计算通过Mie级数计算导体(PEC)和分层介电球体的散射场:
用Mie级数解决方案计算完全导体(PEC)以及分层(分层)介电球体(带有或不带有PEC核心)的系数(An和Bn)和复值散射远场电场。

本研究致力于通过精密的数学手段——Mie级数方法,来精确计算并解析完全导电(理想导体,常被称为完美电导体,PEC)球体以及具有分层结构的介电球体所引起的电磁波散射现象。此方法不仅限于标准的分层介电球体,还涵盖了那些内部含有PEC核心的特殊结构,从而极大地扩展了分析的广度和深度。在这一过程中,核心在于计算一组关键参数,即Mie级数展开中的系数An和Bn,这两个系数直接关联着电磁波与球体相互作用的具体散射特性。

通过细致的数学推导与计算,An和Bn系数能够反映出电磁波在不同介电常数分层间的复杂散射机制,进而让我们能够预测和分析这些球体在电磁波作用下的响应。更为重要的是,本研究不仅仅局限于系数的计算,而是进一步探讨了如何利用这些系数来确定复值散射远场电场的分布。远场电场的特性,包括其幅度与相位信息,对于理解散射体对外界电磁环境的影响以及设计相关的电磁兼容和隐身技术至关重要。

这项工作通过深入应用Mie级数理论,不仅为理解和量化完全导电球体及分层介电球体(无论是否含有PEC核心)在电磁波散射行为方面的复杂性提供了强有力的数学工具,还为相关领域的研究者和工程师在天线设计、遥感探测、生物医学成像等众多高科技应用中,提供了一个精确计算和优化散射特性的可靠框架。

Mie散射理论是用于计算电磁波在球形颗粒上散射的一种经典方法,它可以同时考虑散射、吸收以及透射现象。当处理导体(理想导电体,PEC)和分层介电球体(具有不同介电常数的多层结构)时,Mie散射理论的应用会更加复杂,但原理上仍然基于相同的基本思想,即利用球坐标系中的麦克斯韦方程组,通过展开入射波和散射波为球谐函数来求解问题。

对于导体(PEC)球体:

  1. 边界条件:在导体表面,电场必须为零(理想导电意味着无电场穿透表面)。这一条件被用来确定Mie系数。

  2. Mie系数计算:导体球的Mie散射系数可以通过特定的数学公式求得,这些公式涉及到球的半径、入射波的波长、介电常数对比(外部介质与导体的相对介电常数比为无穷大)等因素。

对于分层介电球体:

  1. 模型设定:分层球体通常由多个同心球壳组成,每个球壳具有不同的介电常数。这要求在计算时考虑每个界面处的边界条件,即连续性和法向导数的连续性。

  2. 递归关系:求解这类问题通常依赖于特定的递归关系来计算每层内部和层间界面的散射和传输系数。这些系数结合球谐函数的特性,形成了一套复杂的线性方程组。

  3. Mie级数求解:对于每个球层,可以分别计算出其对应的Mie系数,然后通过叠加各层的效果来获得整个分层球体的总散射场。这涉及计算一系列的Mie系数(通常标记为 𝑎𝑛an​ 和 𝑏𝑛bn​,对应散射和内部散射项)并将其代入到Mie级数中。

实施步骤简述:

  • 定义参数:确定球体的半径、层数、每层的介电常数、入射波的波长和极化状态。
  • 计算本征值和本征函数:为球谐函数和贝塞尔函数,这些是构建Mie系数的基础。
  • 应用边界条件:对于每个界面,设定匹配条件以保证场的连续性。
  • 解方程组:通过递归关系求解每一层的Mie系数,随后将它们组合以得到总的散射场。
  • 计算散射特性:最终,利用Mie系数计算散射截面、吸收截面、后向散射截面等感兴趣的物理量。

Mie散射理论及其在导体和分层介电球体上的应用是电磁学和光学领域内研究颗粒散射现象的重要工具,广泛应用于大气科学、纳米光子学、生物医学等多个领域。实际计算中,往往需要借助数值软件或专门开发的算法来高效地处理这些复杂数学运算。

📚2 运行结果

部分代码:


% Example 5: Bistatic scattering of a PEC sphere with a lossy dielectric
% coating (epsilon = 4.0 - j1.5) at 47.7 MHz.

frequency = 4.7713e+07;
radius = [3.0 0.75]; % radius of each interface, outermost first
mu = [1.0 1.0 1.0]; % 3rd entry is a dummy value for the PEC region
epsilon = [1.0 (4.0- j*1.5) 1.0]; % 3rd entry is a dummy value for the PEC region
isPEC = 1; % innermost region is conducting
 
[An Bn] = mieLayeredTerms(mu, epsilon, radius, isPEC, frequency, nMax);


figure(5)
 
plot(theta*180/pi, 20.0*log10(abs(eTheta)), 'r', theta*180/pi, 20.0*log10(abs(ePhi)), 'b');
 
axis([0 180 -10 40]);
set(gca, 'fontsize', 14);
set(gca, 'xtick', linspace(0,180,7));
set(gca, 'ytick', linspace(-10,40,6));
xlabel('Bistatic Angle (degrees)')
ylabel('RCS (dBSm)')
grid on
legend('VV', 'HH');

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]王海龙,吴群,吴健,等.一种高效的计算Mie级数的新方法[J].电波科学学报, 2006, 21(6):5.DOI:10.3969/j.issn.1005-0388.2006.06.001.

[2]程玉宝,杨希伟.Mie散射因子的计算方法及其应用[J].光电技术应用, 2005, 20(5):3.DOI:10.3969/j.issn.1673-1255.2005.05.005.

🌈4 Matlab代码实现

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值