💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
基于GRU-Attention的共享单车租赁预测研究是一个结合了门控循环单元(GRU)和注意力机制(Attention)的深度学习应用,旨在通过历史数据和环境特征来预测共享单车租赁数量。以下是对该研究的详细分析:
一、研究背景与意义
随着共享单车市场的快速发展,准确预测共享单车租赁数量对于优化资源配置、提高运营效率具有重要意义。传统的预测方法往往难以应对复杂多变的市场环境和用户行为,而基于GRU-Attention的深度学习模型则能够通过自动学习历史数据中的规律和特征,提高预测的准确性和鲁棒性。
二、模型构建与原理
1. GRU部分
- 作用:GRU是一种改进的循环神经网络(RNN),它解决了传统RNN在训练过程中容易出现的梯度消失或梯度爆炸问题,并保留了RNN处理时间序列数据的能力。在共享单车租赁预测中,GRU能够捕捉数据之间的长期依赖关系,即过去某一时刻的租赁数量如何影响未来某一时刻的租赁数量。
- 优势:相比LSTM,GRU结构更为简单,参数更少,训练速度更快,同时保持了相当的预测性能。这使得GRU在处理大规模时间序列数据时更加高效。
2. Attention部分
- 作用:注意力机制(Attention)是一种能够自动学习不同时间步长对预测结果影响的机制。在共享单车租赁预测中,不同时间点的数据对预测结果的贡献程度是不同的。通过引入注意力机制,模型能够自动分配权重给重要的时间步长,从而提高预测的精度。
- 优势:注意力机制使得模型能够更加关注对预测结果影响较大的特征或时间段,减少了对不相关信息的关注,提高了模型的解释性和预测性能。
三、研究步骤
- 数据收集与预处理:收集共享单车租赁系统的历史数据,包括租赁数量、时间信息(如日期、小时)、天气状况(如温度、湿度、风速等)、地理位置等。对数据进行清洗、去噪、归一化等预处理操作,以确保数据的质量和可用性。
- 特征工程:根据业务需求和数据特点,提取并转换有用的特征。例如,对于分类特征(如天气状况、节假日等),可以采用one-hot编码;对于连续特征(如温度、湿度等),则进行归一化处理。
- 模型构建:结合GRU和Attention的特点,构建基于GRU-Attention的共享单车租赁预测模型。首先使用GRU捕捉时间序列数据中的长期依赖关系,然后在GRU的输出上引入注意力机制,使模型能够自动分配权重给重要的时间步长。
- 模型训练与优化:使用训练数据集对模型进行训练,并通过调整模型参数(如学习率、批大小、迭代次数等)来优化模型性能。同时,可以使用交叉验证等方法来评估模型的泛化能力。
- 结果评估与应用:使用测试数据集对训练好的模型进行评估,计算预测结果的准确率、召回率、F1分数等指标。如果模型性能满足业务需求,则可以将其应用于实际场景中,为共享单车公司的运营决策提供数据支持。
四、研究展望
- 多源数据融合:除了历史租赁数量、天气状况等基本信息外,还可以引入更多数据源(如交通流量、人口迁移等),以提高预测的准确性和全面性。
- 模型融合:结合其他深度学习模型(如CNN、LSTM等)的优点,构建混合模型以提高预测性能。
- 实时预测与调度:将预测模型与实时监控系统相结合,实现共享单车租赁数量的实时预测和动态调度,提高系统的运营效率和服务质量。
综上所述,基于GRU-Attention的共享单车租赁预测研究通过融合GRU在处理时间序列数据上的优势和Attention在关注重要信息上的特长,实现了对共享单车租赁数量的精准预测。未来随着技术的不断发展和数据的不断积累,该领域的研究将更加深入和广泛。
📚2 运行结果
部分代码:
def evaluate_forecasts(Ytest, predicted_data, n_out): # 定义一个函数来评估预测的性能。 mse_dic = [] rmse_dic = [] mae_dic = [] mape_dic = [] r2_dic = [] # 初始化存储各个评估指标的字典。 table = PrettyTable(['测试集指标','MSE', 'RMSE', 'MAE', 'MAPE','R2']) for i in range(n_out): # 遍历每一个预测步长。每一列代表一步预测,现在是在求每步预测的指标 actual = [float(row[i]) for row in Ytest] #一列列提取 # 从测试集中提取实际值。 predicted = [float(row[i]) for row in predicted_data] # 从预测结果中提取预测值。 mse = mean_squared_error(actual, predicted) # 计算均方误差(MSE)。 mse_dic.append(mse) rmse = sqrt(mean_squared_error(actual, predicted)) # 计算均方根误差(RMSE)。 rmse_dic.append(rmse) mae = mean_absolute_error(actual, predicted) # 计算平均绝对误差(MAE)。 mae_dic.append(mae) MApe = mape(actual, predicted) # 计算平均绝对百分比误差(MAPE)。 mape_dic.append(MApe) r2 = r2_score(actual, predicted) # 计算R平方值(R2)。 r2_dic.append(r2) if n_out == 1: strr = '预测结果指标:' else: strr = '第'+ str(i + 1)+'步预测结果指标:' table.add_row([strr, mse, rmse, mae, str(MApe)+'%', str(r2*100)+'%'])
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]陈鑫,刘琦.基于时间序列分析的共享单车未来格局预测[J].现代营销(下旬刊), 2017(10):216-216.DOI:10.3969/j.issn.1009-2994.2017.10.174.
[2]焦志伦,金红,刘秉镰,等.大数据驱动下的共享单车短期需求预测——基于机器学习模型的比较分析[J].商业经济与管理, 2018(8):11.DOI:10.14134/j.cnki.cn33-1336/f.2018.08.002.
[3]甘明.基于深度学习的共享单车预测与调度研究[D].杭州电子科技大学,2022.
[4]靳海红,张帅.基于数据分析的共享单车模式与前景研究[J].商情, 2019.
🌈4 Python代码、数据
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取