电力系统机组组合优化调度(IEEE14节点、IEEE30节点、IEEE118节点)(Matlab代码实现)

 💥💥💥💞💞💞欢迎来到本博客❤️❤️❤️💥💥💥

📝目前更新:🌟🌟🌟电力系统相关知识,期刊论文,算法,机器学习和人工智能学习。
🚀支持:🎁🎁🎁如果觉得博主的文章还不错或者您用得到的话,可以关注一下博主,如果三连收藏支持就更好啦!这就是给予我最大的支持!

目录

1 概述

2 知识点学习

研究步骤

3 运行结果

3.1 算例1——IEEE14节点

3.2 算例2——IEEE30节点

 3.3 算例3——IEEE118节点

3.4 二阶锥松弛法

 4 参考文献

5 Matlab代码及文章详细阅读 


1 概述

本文提出一种确定机组组合的降维半解析动态规划方法,可以与其他经济调度算法相结合,用以解决多种约束条件下的机组组合问题。该方法通过比较各时段负荷及机组参数,剔除各时段下不满足要求的组合状态,从而减少动态规划中的状态点数;根据机组的最小连续运行、停运时间限制,以及机组功率上升、下降速度的约束,剔除了状态点间的无效路径,从而减少了动态规划的路径个数,达到降维的目的;在确定机组启停状态后,再采用解析法进行机组的功率分配,可以大大提高动态规划方法的效率。

2 知识点学习

机组组合问题我们前面都总结过:

电力系统中机组组合强大的Yalmip+Cplex

基于改进的遗传算法的机组组合问题(Python实现)

电力系统机组组合优化调度是一个复杂的问题,它涉及到在满足电力需求的同时,优化发电机的启停状态以及输出功率,以最小化运行成本、满足系统约束(如功率平衡、机组出力限制、网络传输限制等),并考虑系统的可靠性和稳定性。IEEE 14节点、IEEE 30节点和IEEE 118节点系统模型是电力系统研究中常用的测试系统,用于模拟和验证不同的优化算法和策略。

研究步骤

  1. 系统建模
    • 网络模型:包括节点、线路、变压器等元件的参数。
    • 发电机模型:每台发电机的成本函数(通常是二次函数)、最小/最大出力限制、启停成本、爬坡速率等。
    • 负荷模型:各节点的负荷预测值。
  2. 问题定义
    • 目标函数:通常是最小化总运行成本,包括发电成本和启停成本。
    • 约束条件
      • 功率平衡约束:每个节点的注入功率等于负荷。
      • 线路传输容量约束:确保线路上的潮流不超过其最大容量。
      • 发电机出力约束:每台发电机的输出功率在其最小和最大限制之间。
      • 爬坡速率约束:发电机输出功率的变化率有限制。
      • 启停时间约束:发电机从停机到启动或从运行到停机需要一定时间。
  3. 优化算法选择
    • 混合整数线性规划(MILP):将问题中的非线性部分线性化,使用商业求解器(如CPLEX、Gurobi)求解。
    • 动态规划:适用于小规模系统,可以处理复杂的约束和状态转移。
    • 启发式算法:如遗传算法、粒子群优化、模拟退火等,适用于大规模系统,但可能无法保证找到最优解。
    • 拉格朗日松弛法:将复杂约束松弛到目标函数中,通过迭代求解。
  4. 数据准备与仿真
    • 使用MATLAB、Python(如使用Pyomo库结合CPLEX或Gurobi求解器)等工具进行编程。
    • 加载IEEE 14节点、IEEE 30节点或IEEE 118节点的系统数据。
    • 设定仿真参数,如时间步长、仿真时长等。
  5. 结果分析
    • 分析优化后的机组启停计划和出力计划。
    • 比较不同算法的性能,如求解时间、成本节约等。
    • 评估系统的可靠性和稳定性,如是否满足所有约束条件。
  6. 优化与改进
    • 根据仿真结果调整算法参数或优化模型。
    • 尝试新的优化策略或算法。

3 运行结果

3.1 算例1——IEEE14节点

3.2 算例2——IEEE30节点

 3.3 算例3——IEEE118节点

3.4 二阶锥松弛法

%发电机费用曲线 二次函数分段线性化
P_nl = sdpvar(n_gen, n_L, n_T);
% for i = 1: n_gen
for t = 1: n_T
    C = [C,
        gen_P(gen(:,GEN_BUS),t) == sum(P_nl(:,:,t), 2)+gen(:,GEN_PMIN).*u_state(gen(:,GEN_BUS),t)/baseMVA,
        ];
%         for l = 1: n_L
    C = [C,
        0 <= P_nl(:,:,t) <= (gen(:, GEN_PMAX)-gen(:, GEN_PMIN))/n_L/baseMVA*ones(1,n_L),
        ];
%         end
end
% end
%%
% 机组开机费用 Cjk
cost_up = sdpvar(n_gen, n_T);
C = [C, cost_up >= 0];
for k = 1: n_T
    for t = 1: k-1
         C = [C,
            cost_up(:,k) >= start_cost(:,t).*(u_state(gen(:,GEN_BUS),k) - sum(u_state(gen(:,GEN_BUS),[k-t: k-1]),2))
            ];       
    end
end
for i = 1: n_gen
    if (init_state(gen(i,GEN_BUS)) == 0)
        C = [C,
            cost_up(i,1) >= start_cost(i,init_down(i))*(u_state(gen(i,GEN_BUS),1)-init_down(i)*init_state(gen(i,GEN_BUS)))
            ];
    end
end

%发电机费用曲线 二次函数分段线性化
P_nl = sdpvar(n_gen, n_L, n_T);
% for i = 1: n_gen
for t = 1: n_T
    C = [C,
        gen_P(gen(:,GEN_BUS),t) == sum(P_nl(:,:,t), 2)+gen(:,GEN_PMIN).*u_state(gen(:,GEN_BUS),t)/baseMVA,
        ];
%         for l = 1: n_L
    C = [C,
        0 <= P_nl(:,:,t) <= (gen(:, GEN_PMAX)-gen(:, GEN_PMIN))/n_L/baseMVA*ones(1,n_L),
        ];
%         end
end
% end
%%
% 机组开机费用 Cjk
cost_up = sdpvar(n_gen, n_T);
C = [C, cost_up >= 0];
for k = 1: n_T
    for t = 1: k-1
         C = [C,
            cost_up(:,k) >= start_cost(:,t).*(u_state(gen(:,GEN_BUS),k) - sum(u_state(gen(:,GEN_BUS),[k-t: k-1]),2))
            ];       
    end
end
for i = 1: n_gen
    if (init_state(gen(i,GEN_BUS)) == 0)
        C = [C,
            cost_up(i,1) >= start_cost(i,init_down(i))*(u_state(gen(i,GEN_BUS),1)-init_down(i)*init_state(gen(i,GEN_BUS)))
            ];
    end
end 

👨‍🎓博主课外兴趣:中西方哲学,送予读者:

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。在我这个专栏记录我有空时的一些哲学思考和科研笔记:

电力系统机组组合优化调度是指在一个电力系统中,通过优化和调度各个机组的运行方式,以最大程度地提高系统的效率和可靠性。在IEEE 14节点系统中,该问题的目标是最小化发电成本,同时满足电力需求和各种操作限制。 首先,我们需要确定机组的组合,即选择哪些机组应该投入运行。在这个问题中,我们可以使用数学规划方法,如整数规划或混合整数线性规划,来确定最佳的机组组合。这些方法将考虑机组的最小运行成本、发电能力和各种操作限制,如启停时间和最小运行时间,以及机组的运行状态。通过优化机组组合,我们可以最小化发电成本,同时满足电力需求。 接下来,我们需要对机组调度进行优化。调度是指在给定的时间段内,确定每个机组的发电量和出力调节策略,以满足电力需求和操作限制。我们可以使用数学规划方法,如线性规划或非线性规划,来确定最佳的机组调度。这些方法将考虑机组的出力能力、发电成本、启停时间和运行状态等因素,以最大程度地提高系统的效率和可靠性。 最后,通过机组组合优化调度,我们可以实现电力系统的经济运行和可靠供电。优化调度可以最大限度地降低发电成本,减少燃料消耗和排放,提高电力系统的效率和可持续性。此外,优化调度可以根据负荷变化和机组故障等情况,实时调整机组的发电量和出力调节策略,以保证系统的稳定运行和供电安全。 综上所述,电力系统机组组合优化调度IEEE 14节点系统中是通过优化机组的组合和调度,以最小化发电成本、最大程度地提高系统效率和可靠性,实现经济运行和可靠供电的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值