动态规划——背包问题
文章目录
理解背包问题:分类与解题模板
在算法问题中,背包问题是一类经典的动态规划问题,它们的核心思想是选择一组物品,满足某个条件或目标。背包问题不仅限于物理意义上的“背包”和“物品”,其概念可以扩展到许多实际场景,如资金分配、时间管理、资源优化等。
什么是背包问题?
背包问题可以定义为:给定一个背包容量(target
)和一组物品(nums
),能否按某种方式选取nums
中的元素,使其总和或总重量等于target
?
注意:
- 背包容量和物品可以是数值或其他类型(如字符串)。
- **目标值(target)**可以是显式给出,也可能需要我们从题目中推导(如
sum/2
等)。 - 选择方式包括:每个物品最多选一次、每个物品可以多次选择、物品顺序有无影响等。
背包问题的分类
背包问题可以根据选择方式和问题类型进行分类。
按选择方式分类:
- 0/1背包问题:每个物品最多选取一次。
- 完全背包问题:每个物品可以重复选择。
- 组合背包问题:背包中的物品顺序重要,选择时要考虑排列组合。
- 分组背包问题:多个背包,每个背包内的物品只能选择一个,需要遍历每个背包。
按问题类型分类:
- 最值问题:求最大值或最小值。
- 存在问题:是否存在某种组合满足条件。
- 组合问题:求所有满足条件的排列组合数。
综合分类:
通过将选择方式与问题类型结合,可以得到如下常见的背包问题类型:
- 0/1 背包最值问题
- 0/1 背包存在问题
- 0/1 背包组合问题
- 完全背包最值问题
- 完全背包存在问题
- 完全背包组合问题
- 分组背包最值问题
- 分组背包存在问题
- 分组背包组合问题
背包问题解题模板
解决背包问题的基本方法是动态规划。解题的核心是设置一个dp
数组,记录每种状态下的最优解,然后通过遍历物品和背包容量来更新dp
。
基本解题思路:
- 二维动态规划:定义
dp[i][j]
表示从前i
个物品中选择不超过重量j
的最大价值。 - 一维动态规划:通过去掉物品的那一层,简化成
dp[j]
表示容量为j
的背包能放下的最大价值。
模板代码:
以经典的0/1背包问题为例,最基础的二维动态规划代码如下:
int[][] dp = new int[n + 1][target + 1];
// 遍历物品
for (int i = 1; i <= n; i++) {
// 遍历背包容量
for (int j = 0; j <= target; j++) {
if (j >= weight[i - 1]) {
dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - weight[i - 1]] + value[i - 1]);
} else {
dp[i][j] = dp[i - 1][j];
}
}
}
一维动态规划的简化代码如下:
int[] dp = new int[target + 1];
for (int i = 0; i < n; i++) {
for (int j = target; j >= weight[i]; j--) {
dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);
}
}
分类解题模板:
根据背包问题的分类,解题时可以选择合适的遍历顺序和状态转移方程:
- 0/1背包:外循环物品,内循环容量(倒序)。
- 完全背包:外循环物品,内循环容量(正序)。
- 组合背包:外循环容量,内循环物品(正序)。
- 分组背包:三重循环,外层遍历背包,内层根据题目要求选取合适的背包类型。
状态转移方程的写法也因问题类型不同而有所变化:
- 最值问题:
dp[i] = max/min(dp[i], dp[i-nums]+1)
。 - 存在问题:
dp[i] = dp[i] || dp[i-num]
。 - 组合问题:
dp[i] += dp[i-num]
。
例题解析
通过几个例题来具体说明如何应用背包问题的分类与模板:
- 最后一块石头的重量 II(1049. 最后一块石头的重量 II)—— 01背包的最值问题。
- 零钱兑换(322. 零钱兑换)—— 完全背包的最值问题。
- 分割等和子集(416. 分割等和子集)—— 01背包的存在问题。
注意:
1、背包容量target和物品nums的类型可能是数,也可能是字符串
2、target可能题目已经给出(显式),也可能是需要我们从题目的信息中挖掘出来(非显式)(常见的非显式target比如sum/2等)
3、选取方式有常见的一下几种:每个元素选一次/每个元素选多次/选元素进行排列组合
那么对应的背包问题就是下面我们要讲的背包分类
背包问题解题模板(实践中记忆)
首先先了解一下原始背包问题的解题思路和代码:
最开始的背包问题是二维动态规划
import java.util.ArrayList;
import java.util.List;
public class KnapsackProblem {
public static void knapsack() {
List<Integer> weight = new ArrayList<>(List.of(1, 3, 4));