头歌最小生成树 ------习题

一、背包问题

1.理解:背包问题相当于最小生成树,也就是线性规划最优解

2.公式:

M: 背包的总重量

w:物品 i 的重量

p: 物品 i 的价值

3.基本背包练习

4.完全背包问题:每种物品有无限件 >>> 开头加一个for循环 >>> 这个                              for循环是物品的种类 n 

题目

### 平台上最小生成树算法实现 #### 关于平台上的最小生成树问题及相关内容 在探讨如何实现在平台上的最小生成树(MST)算法之前,了解其基本概念及其优势至关重要。最小生成树能够找到连接所有节点并使总边权重达到最小的子图[^1]。 对于同一张图而言,尽管通常情况下最小生成树是唯一的,但在某些特殊情形下也可能存在多棵不同形态却拥有相同总权重的最小生成树。这表明该类问题的结果并非绝对唯一,而是取决于具体输入数据集的特点。 考虑到适用范围广泛这一特性,MST不仅限于理论研究,在网络设计等领域同样有着广泛应用价值。例如构建成本最低的城市间通信线路或是电力传输网等现实场景中的优化难题都可以通过求解最小生成树来获得有效解答[^2]。 #### C语言环境下Prim算法的具体实现方式 为了便于理解以及后续编程实践操作方便起见,下面给出一段基于C语言编写的简单版本Prim算法代码片段用于计算给定无向加权连通图G=(V,E)的一颗最小生成树T: ```c #include <stdio.h> #define MAX_VEX_NUM 25 // 定义最大顶点数量 #define INFINITY 32767 // 设置无穷大常量值 typedef struct { char vertex[MAX_VEX_NUM][10]; // 存储各个结点名称字符串形式表示 int edge[MAX_VEX_NUM][MAX_VEX_NUM]; // 邻接矩阵记录两两之间是否存在路径关系及对应代价大小 int num_vertexes, num_edges; // 图中实际存在的定点数目和边的数量统计变量 } MGraph; void MiniSpanTree_Prim(MGraph G){ bool visited[MAX_VEX_NUM]; int lowcost[MAX_VEX_NUM], closest[MAX_VEX_NUM]; for(int i=0;i<G.num_vertexes;++i){visited[i]=false;} visited[0]=true; for(int j=1;j<G.num_vertexes;++j){ lowcost[j]=G.edge[0][j]; closest[j]=(lowcost[j]==INFINITY)?-1:0; } for(int k=1;k<G.num_vertexes-1;++k){ int min=INFINITY,minid=-1; for(int w=1;w<G.num_vertexes;++w){ if(!visited[w]){ if(lowcost[w]<min){ min=lowcost[w]; minid=w; } } } printf("Edge (%d,%d)\n",closest[minid]+1,minid+1); visited[minid]=true; for(int v=1;v<G.num_vertexes;++v){ if(G.edge[minid][v]<lowcost[v]&&!visited[v]){ lowcost[v]=G.edge[minid][v]; closest[v]=minid; } } } } ``` 上述程序实现了经典的Prim方法来寻找指定图结构下的最优解之一——即一棵满足条件的成本最少化生成树实例[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值