最小生成树2:Kruskal算法

Kruskal算法

  Kruskal算法是一种用来寻找最小生成树的算法,由Joseph Kruskal在1956年发表。用来解决同样问题的还有Prim算法和Boruvka算法等。三种算法都是贪婪算法的应用。和Boruvka算法不同的地方是,Kruskal算法在图中存在相同权值的边时也有效。
算法描述
  1).记Graph中有v个顶点,e个边;
  2).新建图Graphnew,Graphnew中拥有原图中相同的e个顶点,但没有边;
  3).将原图Graph中所有e个边按权值从小到大排序;
  4).循环:从权值最小的边开始遍历每条边,直至图Graph中所有的节点都在同一个连通分量。if 这条边连接的两个节点于图Graphnew中不在同一个连通分量中,添加这条边到图Graphnew中。

简单证明Kruskal算法。对图的顶点数n做归纳,证明Kruskal算法对任意n阶图适用。
归纳基础:
  n=1,显然能够找到最小生成树。
归纳过程:
  假设Kruskal算法对n≤k阶图适用,那么,在k+1阶图G中,我们把最短边的两个端点a和b做一个合并操作,即把u与v合为一个点v’,把原来接在u和v的边都接到v’上去,这样就能够得到一个k阶图G’(u,v的合并是k+1少一条边),G’最小生成树T’可以用Kruskal算法得到。
  我们证明T‘+{<u,v>}是G的最小生成树。
  用反证法。如果T’+{<u,v>}不是最小生成树,最小生成树是T,即W(T)<W(T’+{<u,v>})。显然T应该包含<u,v>,否则,可以用<u,v>加入到T中,形成一个环,删除环上原有的任意一条边,形成一棵更小权值的生成树。而T-{<u,v>},是G’的生成树。所以W(T-{<u,v>})<=W(T’),也就是W(T)<=W(T’)+W(<u,v>)=W(T’+{<u,v>}),产生了矛盾。于是假设不成立,T’+{<u,v>}是G的最小生成树,Kruskal算法对k+1阶图也适用。
  由数学归纳法,Kruskal算法得证。

图例说明
在这里插入图片描述首先第一步,我们有一张图Graph,有若干点和边。
在这里插入图片描述将所有的边的长度排序,用排序的结果作为我们选择边的依据。这里再次体现了贪心算法的思想。资源排序,对局部最优的资源进行选择,排序完成后,我们率先选择了边AD。这样我们的图就变成了右图
在这里插入图片描述在剩下的变中寻找。我们找到了CE。这里边的权重也是5
在这里插入图片描述依次类推我们找到了6,7,7,即DF,AB,BE。
在这里插入图片描述下面继续选择, BC或者EF尽管现在长度为8的边是最小的未选择的边。但是现在他们已经连通了(对于BC可以通过CE,EB来连接,类似的EF可以通过EB,BA,AD,DF来接连)。所以不需要选择他们。类似的BD也已经连通了(这里上图的连通线用红色表示了)。最后就剩下EG和FG了。当然我们选择了EG。最后成功的图就是右:
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <vector>
using namespace std;
const int maxn=1005;
int n,m;
struct edge
{
    int s,e;
    int len;
};
edge e[maxn];
int a[maxn];
vector <edge> ve; //记录纳入的边
//初始化

void init ()
{
    for (int i=1;i<=n;i++)
        a[i]=i;
}
//查找父节点
int finds(int re)
{
    if(re==a[re])
        return re;
    return a[re]=finds(a[re]);
}
//将两个集合联合
bool unit (int x,int y)
{
    int temp1=finds(x);
    int temp2=finds(y);
    if(temp1!=temp2)
    {
         a[temp1]=temp2;
         return true;
    }
    return false;
}
int compare (edge a,edge b)
{
    return a.len<b.len;
}
//krusal算法
void kruskal ()
{
    //先进行排序
    sort(e,e+m,compare);
    int num=n;
    int sum=0;
    for (int i=0;i<m&&num>1;i++)
    {
        //判断是否在同一集合中,在同一集合就不再计入
        if(unit(e[i].s,e[i].e))
        {
            ve.push_back(e[i]);
            sum+=e[i].len;
            num--;
        }
    }
    if(num==1)
        printf("最小生成树的权值和为%d\n",sum);
    else
        printf("不存在最小生成树\n");
}
//遍历纳入的边
void traverse ()
{
    printf("纳入的边为:\n");
    for (int i=0;i<ve.size();i++)
        printf("%d<->%d 长度为%d\n",ve[i].s,ve[i].e,ve[i].len);
}
int main()
{
    scanf("%d%d",&n,&m);
    init();
    for (int i=0;i<m;i++)
    {
        scanf("%d%d%d",&e[i].s,&e[i].e,&e[i].len);
    }
    kruskal();
    traverse ();
    return 0;
}
7 11
1 2 7
1 4 5
2 4 9
2 3 8
2 5 7
3 5 5
4 5 15
4 6 6
5 6 8
5 7 9
6 7 11
最小生成树的权值和为39
纳入的边为:
1<->4 长度为5
3<->5 长度为5
4<->6 长度为6
1<->2 长度为7
2<->5 长度为7
5<->7 长度为9
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值