牛客周赛Round 87 小苯的Z串匹配

#include <iostream>
#include <cstring>
#include <algorithm>
#define int long long

using namespace std;

signed main()
{
    int t;
    cin>>t;
    while(t--)
    {
        int n;
        cin>>n;
        int arr[n+10];
        for(int i=1;i<=n;i++)
        {
            cin>>arr[i];
        }
        string s;
        cin>>s;
        int cnt=0;
        for(int i=0;i<s.size();i++)
        {
            if(s[i]=='<')
            {
                if(arr[i+1]>=0) cnt++;
                arr[i+1]=-1;
            }
            if(s[i]=='>')
            {
                if(arr[i+1]<=0) cnt++;
                arr[i+1]=1;
            }
            if(s[i]=='Z')
            {
                if(arr[i]*arr[i+1]<=0)
                {
                    arr[i+1]=arr[i];
                    cnt++;
                }
            }
        }
        cout<<cnt<<endl;
    }
    return 0;
}

关于Round 83 的具体题目和解答,目前并未提供直接的引用支持。然而,可以基于以往的经验以及类似的周赛模式来推测可能涉及的内容结构。 通常情况下,周赛会包含多个不同难度级别的题目,从简单的签到题(A 类型)到较难的挑战性问题(E 或 F 类型)。以下是根据已有经验构建的一般框架: ### 周赛 Round 83 可能的主题 #### A - 签到题 这类题目通常是简单算法的应用或者基础逻辑判断。例如: ```python def solve_a(): n = int(input()) result = sum(range(1, n + 1)) # 计算前N项自然数之和 print(result) solve_a() ``` 此部分无需深入解析,主要考察参赛者的基础编程能力[^1]。 #### B - 中等难度题 此类题目可能会涉及到数组操作、字符处理或基本数据结构应用。比如给定一段文字统计特定字符频率的问题。 ```python from collections import Counter def solve_b(): s = input().strip() counter = Counter(s) most_common_char, count = counter.most_common(1)[0] print(most_common_char, count) solve_b() ``` 上述代码片段展示了如何利用Python内置库快速解决常见计数类问题[^2]。 #### C/D/E/F 更高阶挑战 这些更复杂的任务往往需要运用高级技巧如动态规划(DP),图论(Graph Theory)或者其他专门领域知识才能有效完成。由于缺乏具体的Round 83资料,这里仅给出一个假设性的例子有关最短路径寻找: ```python import heapq INF = float('inf') def dijkstra(graph, start_node): distances = {node: INF for node in graph} distances[start_node] = 0 priority_queue = [(0, start_node)] while priority_queue: current_distance, current_vertex = heapq.heappop(priority_queue) if current_distance > distances[current_vertex]: continue for neighbor, weight in graph[current_vertex].items(): distance = current_distance + weight if distance < distances[neighbor]: distances[neighbor] = distance heapq.heappush(priority_queue, (distance, neighbor)) return distances graph_example = { 'A': {'B': 1, 'C': 4}, 'B': {'A': 1, 'C': 2, 'D': 5}, 'C': {'A': 4, 'B': 2, 'D': 1}, 'D': {'B': 5, 'C': 1} } print(dijkstra(graph_example, 'A')) ``` 这段程序实现了经典的迪杰斯特拉算法用于求解加权无向图中的单源最短路径问题[^3]. 尽管无法确切知道每道实际考题是什么样子,但通过以上介绍应该能够帮助理解一般竞赛形式下的潜在考点及其解决方案设计方法.
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值