自学笔记:DroneVehicle 红外可见光小目标数据集 配对

红外可见光融合的小目标检测 现在已经成为研究的主流,不仅克服光感不好的情况,充分利用红外的轮廓信息,以及充分利用可见光的纹理信息,实现全天候的检测已经成为趋势,模型轻量化,易部署。

1.数据预处理

数据集是天津大学拍摄制作。

首先需要数据处理,因为原本的数据集自带的有100*100的白边,对检测影响很大,特别是YOLO系列的检测模型

0a74197b3b6d431083e6d7d6e05075d2.png

处理前后对比

2.YOLOv8训练

检测效果还不错

7056309cf8ec450984a9703f06bac256.png

特别注意的是在数据集转换的时候,也就是转成YOLO的时候,可能会出现负坐标,或者是超过1的坐标值,这样就会导致模型训练不了,所以,需要进行针对那些数据集进行特殊的处理。

改进后参数少,模型轻量化,直接暴涨点:

72cf9f3cbd494e098e77c54fc0cb1ca8.png

数据集处理的方法&#

### 关于红外光和可见光目标检测算法 #### 基于计算机视觉的红外光图像小目标识别技术 红外光图像在多个领域有着广泛应用,特别是在军事侦察、环境监测以及医疗诊断等方面展现出巨大潜力[^1]。然而,在实际应用过程中遇到的主要难题在于如何有效地从小尺度、低对比度且容易受到噪声影响的环境中识别出感兴趣的小目标。 为了应对这些挑战,研究人员提出了多种基于计算机视觉的技术方案来提高红外光图像中小目标的检出率。其中一种有效的方式就是利用形态学处理增强特征并去除背景杂波的影响;另一种则是通过引入深度学习框架下的卷积神经网络(CNN),自动提取复杂背景下微弱信号所携带的信息特性,从而实现更精准的位置定位与分类判断。 ```matlab % 形态学操作示例代码片段 se = strel('disk', 2); % 创建结构元素 I_opened = imopen(I, se); % 开运算去噪 ``` #### 红外图像和可见光图像的配准融合及前方障碍物检测 当涉及到具体应用场景比如自动驾驶汽车或无人机导航时,则需要考虑将来自不同传感器的数据源——即红外线与可见光线获取的画面相结合来进行综合分析。这不仅能够弥补单一模态数据存在的局限性(如夜间条件下可见光相机表现不佳),而且还能进一步提升系统的鲁棒性和准确性[^2]。 在此基础上,采用光流法作为核心组件之一,该方法主要用于估算连续帧之间物体移动情况,进而辅助完成动态场景理解任务。例如,在车辆行驶过程中持续跟踪前方可能出现的各种潜在威胁因素,并及时发出预警提示给驾驶员或其他控制系统采取相应措施加以规避风险。 ```matlab flow = estimateFlow(opticFlowObj, I); imshow(flow) hold on; quiver(flow.Y, flow.X, flow.Vy, -flow.Vx, 'Color','r'); title('Estimated Optical Flow Velocity Vectors') ``` #### 夜间多目标实时检测算法 针对夜晚环境下特殊的工作需求,有学者探索了结合可见光与热红外影像的优势互补策略用于行人及其他活动实体的身份验证工作当中。因为此时普通的光学设备难以捕捉清晰轮廓细节,而依靠温度差异形成的辐射能量分布则成为了一种可靠的替代手段[^3]。 这种跨频谱协作模式不仅可以改善传统单通道感知方式所带来的诸多不便之处,同时也为开发更加智能化的安全防护体系提供了新的思路和技术支持。特别是对于那些处于极端天气状况下或是光照条件极差区域内的监控设施而言尤为重要。 ---
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值