遥感数据集和链接【自用】

1、 VEDAI 是用于航空影像车辆检测的数据集,可用作在不受约束的环境中对自动目标识别算法进行基准测试的工具。数据库中的车辆除了体积小之外,还表现出不同的变化,例如多种方向、光照/阴影变化、镜面反射或遮挡。此外,每幅图像都有多个光谱带和分辨率。还给出了精确的实验方案,确保可以正确重现和比较不同人获得的实验结果。我们还给出了一些基线算法在此数据集上的表现,针对这些算法的不同设置,以说明任务的难度并提供基线比较。
数据链接
在这里插入图片描述
2、NWPU-RESISC45 数据集是由西北工业大学(NWPU)创建的一个公开可用的遥感图像场景分类(RESISC)基准。 该数据集包含 31500 张图像,涵盖 45 个场景类别,每个类别包含 700 张图像。 这 45 个场景类别包括飞机、机场、棒球场、篮球场、海滩、桥梁、矮林、教堂、圆形农田、云、商业区、密集住宅区、沙漠、森林、高速公路、高尔夫球场、地面跑道场地、港口、工业区、十字路口、岛屿、湖泊、草地、中等住宅区、移动房屋公园、山、立交桥、宫殿、停车场、铁路、火车站、矩形农田、 草地、中等住宅区、移动房屋公园、山、立交桥、宫殿、停车场、铁路、火车站、矩形农田、河流、环岛、跑道、海冰、船舶、雪山、稀疏住宅区、体育场、储油罐、网球场、露台、热电站和湿地。
数据链接

3、DroneVehicle数据集由无人机采集的56878张图像组成,其中一半为RGB图像,其余为红外图像。我们为这五个类别制作了丰富的带有定向边界框的注释。其中,轿车有389779条RGB图像注释,红外图像注释428086条;货车有22123条RGB图像注释,红外图像注释25960条;客车有15333条RGB图像注释,红外图像注释16590条;货车有11,935条RGB图像注释,红外图像注释12708条;货车有13400条RGB图像注释,红外图像注释17173条。该数据集可在下载页面上获得。在dronvehicle中,为了标注图像边界处的物体,我们在每张图像的上、下、左、右设置了宽度为100像素的白色边框,使下载的图像比例为840 x 712。在训练我们的检测网络时,我们可以进行预处理,去除周围的白色边框,并将图像比例更改为640 x 512。
数据链接

4、AID Dataset 是一个遥感影像数据集,其包含 30 个类别的场景图像,其中每个类别有约 220 – 420 张,整体共计 10000 张,其中每张像素大小约为 600*600 。
数据链接

5、SEN1-2数据集容纳了来自于哨兵一号和哨兵二号的 282,384 个SAR-Opt数据对。哨兵一号包括两个极地轨道卫星,配备了C波段SAR遥感系统,使它们获得了无视天气情况进行观测的能力。哨兵一号以预编程模式运行,以避免冲突并向长期运行的程序生成具有一致性的数据存档。取决于选择四种特有的成像模式中的某一种,图像分辨率最高可达五米,覆盖四百公里内的区域,而且,哨兵一号在赤道附近能提供双极化能力,重访时间也非常短,大概一周。将卫星高度和姿态的高精度和基于距离的SAR系统的高精度相结合,哨兵一号具有高开箱即用( high out-of-the-box )的地理定位精度。对于我们数据集中的哨兵一号图像,采用了最为常规的干涉宽幅宽带(IW)模式下采集,结果就是所谓的地面检测(GRD)效果。这些图像中每个像素都包含dB标度和σ0反向散射系统,采用的方向角为五米,范围是二十米。为了简化操作,我们把注意力集中在垂直极化(VV)数据上而把其他的极化抛到一边。最后,对于精确的正射校正,恢复的轨道信息与三十米的SRTM-DEM或者是ASTER-DEM相结合,弥补了高纬度地区无法得到数据的缺陷。终端用户可能对数据做自己想要的预处理来使数据更适合自己的任务,因此,我们就没有做什么散斑过滤之类的工作。哨兵二号包括了在同一个极地轨道上的两颗卫星,它们彼此相差180°,这项工程目的是为SPOT和LandSat类型的多光谱图像数据续命,所得到的数据提供了有关地球表面几十年的信息。它的扫描宽幅达到290公里,当卫星运行在赤道面附近(仅有一颗)时,回访时间大约是十天,有两颗卫星是则是五天。在没有云的时候,它尤其适合处在生长季节内的植被检测。对于我们所使用的哨兵二号卫星数据的部分来说,只涉及了红色、绿色和蓝色通道(也就是第4、3和2波段),用RGB来生成逼真的彩色图像。哨兵二号的数据并非以卫星图片的形式分发,而是精确的地理参考颗粒(granules),因此就省了我们做进一步处理。与SAR系统不同,光学图像选择数据必须参考云层覆盖的量,对于刚开始的选择,在数据库里查询,从而能使用那些云层覆盖率在一个百分点以下的颗粒。
数据链接

6、SEN12MS 数据集是一个专为深度学习与多模态遥感数据融合设计的综合性数据集,由慕尼黑工业大学地球观测信号处理组与德国航空航天中心(DLR)联合开发,包含全球范围内 180,662 组地理对齐的 SAR-光学-土地覆盖三元组数据,每组数据由同一区域的 Sentinel-1 C 波段 SAR 影像(VV/VH 双极化,分辨率 10 米)、Sentinel-2 多光谱影像(13 个波段,分辨率 10-60 米)及 MODIS 土地覆盖标签构成,覆盖 2017 年全年的气象季节数据,通过 Google Earth Engine 半自动化流程筛选低云量光学影像并确保 SAR 与光学数据时空同步性‌。其 SAR 数据捕捉地表微波散射特性,光学数据提供多光谱反射信息,土地覆盖标签支持像素级分类任务,适用于语义分割、多模态特征融合、时序去云修复等场景‌。该数据集以 10 米地面采样距离(GSD)对齐,地理坐标精确匹配,并开源提供预处理脚本与 PyTorch/TensorFlow 接口,显著降低了多传感器数据融合研究的门槛‌。衍生版本 SEN12MS-CR-TS 进一步扩展为时序多模态数据集,支持基于扩散模型的云修复等复杂任务,验证了其在处理任意长度时序输入与跨模态信息整合方面的灵活性‌。作为遥感领域基准数据集,SEN12MS 通过全球随机采样覆盖多样化地表类型与气候带,减少了模型过拟合风险,推动了多任务学习与可解释遥感大模型的发展‌。
数据链接

7、Potsdam: https://seafile.projekt.uni-hannover.de/f/429be50cc79d423ab6c4/ size: 13.3GB
Toronto: https://seafile.projekt.uni-hannover.de/f/fc62f9c20a8c4a34aea1/ size: 3.4GB
Vaihingen: https://seafile.projekt.uni-hannover.de/f/6a06a837b1f349cfa749/ size: 16.0 GB
CjwcipT4-P8g

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值