故障诊断 | 基于SE的半监督元学习网络在小样本故障诊断中的应用附源码

15 篇文章 7 订阅 ¥29.90 ¥99.00

传统的机器学习由于结构较浅,很难从故障数据中获得有代表性的特征。Wen等人提出用图像识别领域成熟的CNN,用于识别旋转机械故障并从原始数据中提取二维深度特征。邵等人提出了一种用于轴承故障检测的连续深层信念网络(CDBN),该网络可以获取轴承振动信号中的深层非线性关系。使用多核方法,通过域自适应获得故障信号在不同条件下的一般特征。

通过对大量前序方法研究的基础上,本文构建了一个基于原型网络的基于度量的元学习网络。所提出的半监督算法能够进一步利用无标签数据细化生成的原型,并显著的增强故障识别准确率。除此之外为了能够进一步增强提取特征的能力,注意机制被利用到所提的方法中以提取更多有效的特征。将经典的随机梯度下降(SGD)优化器和自适应矩估计(Adam)集成为组合优化器,以快速收敛SSMN的训练损失。

本文提出了一种基于挤压和刺激注意的的半监督元学习网络(SSMN)用于少样本故障诊断,其中半监督元学习网络(SSMN)由一个参数编码器、一个非参数化原型细化过程和一个距离函数组成。基于注意机制,这个编码器能够提取不同的特征去生成原型,以增强识别的准确性。通过半监督小样本学习,SSMN利用未标注的数据去细化原始原型,以更好的识别故障。为了能够更有效的优化SSMN设计了一个组合学习优化器。

这篇论文最主要的贡献概括如下:

(1)为实现数据稀缺性故障诊断,提出了具有挤压激励关注的半监督元学习网络(SSMN)。设计半监督元学习算法对原型进行细化,编码器采用注意机制提取更有效的特征。

(2)将经典的随机梯度下降(SGD)优化器和自适应矩估计(Adam)作为组合优化器,快速收敛SSMN的训练损失。讨论了其实用性,并探讨了其潜力。

(3)利用轴承振动数据集进行了大量的少量试验,以评估该方法的有效性。在不同的诊断场景下&#

  • 4
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
对于不均衡样本条件下的轴承故障诊断,可以采取以下步骤: 1. 数据收集:收集大量轴承正常和故障样本的数据。确保数据集包含不同类型和程度的故障样本。 2. 数据预处理:对收集到的数据进行预处理,包括去除噪声、填充缺失值和归一化等操作。 3. 特征工程:从原始数据提取有意义的特征。可以使用频域分析、时域分析和小波分析等方法提取与轴承故障相关的特征。 4. 样本均衡:由于不均衡样本可能导致模型偏向多数类别,可以采用一些方法处理样本不平衡问题,如欠采样、过采样或者合成新样本等。 5. 模型选择与训练:选择合适的机器学习或深度学习模型进行轴承故障诊断训练。常用的模型包括支持向量机(SVM)、随机森林(Random Forest)、卷积神经网络(CNN)等。 6. 模型评估:使用评估指标如准确率、召回率、F1-Score等来评估模型的性能。可以采用交叉验证等方法来提高评估的准确性。 7. 调优与优化:根据模型评估结果,对模型进行调优与优化。可以尝试不同的参数组合、特征选择等方法来提升模型性能。 8. 模型应用:将训练好的模型应用于实际轴承故障诊断。对新收集到的数据进行预测,判断轴承是否存在故障,并进行相应的维修或更换。 需要注意的是,在不均衡样本条件下进行轴承故障诊断需要充分考虑样本分布的不平衡性,并选择合适的方法来解决样本不平衡问题,以提高模型的准确性和可靠性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天酷科研

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值