在MATLAB中实现SI、SIS、SIR、SIRS、SEIR和SEIRS流行病模型,你可以使用差分方程或微分方程的方式进行建模和模拟。下面是每个模型的基本框架和示例代码:
SI模型(Susceptible-Infectious):
ini
function SIModel(beta, N, timesteps)
S = N - 1; % 初始易感人群数量
I = 1; % 初始感染人群数量
for t = 1:timesteps
newInfections = beta * S * I / N; % 新感染人数
S = S - newInfections; % 更新易感人数
I = I + newInfections; % 更新感染人数
% 可以在这里绘制结果或记录数据
end
end
SIS模型(Susceptible-Infectious-Susceptible):
ini
function SISModel(beta, gamma, N, timesteps)
S = N - 1; % 初始易感人群数量
I = 1; % 初始感染人群数量
for t = 1:timesteps
newInfections = beta * S * I / N; % 新感染人数
newRecoveries = gamma * I; % 新康复人数
S = S - newInfections + newRecoveries; % 更新易感人数
I = I + newInfections - newRecoveries; % 更新感染人数
% 可以在这里绘制结果或记录数据
end
end
SIR模型(Susceptible-Infectious-Recovered):
ini
function SIRModel(beta, gamma, N, timesteps)
S = N - 1; % 初始易感人群数量
I = 1; % 初始感染人群数量
R = 0; % 初始康复人群数量
for t = 1:timesteps
newInfections = beta * S * I / N; % 新感染人数
newRecoveries = gamma * I; % 新康复人数
S = S - newInfections; % 更新易感人数
I = I + newInfections - newRecoveries; % 更新感染人数
R = R + newRecoveries; % 更新康复人数
% 可以在这里绘制结果或记录数据
end
end
SIRS模型(Susceptible-Infectious-Recovered-Susceptible):
ini
function SIRSModel(beta, gamma, mu, N, timesteps)
S = N - 1; % 初始易感人群数量
I = 1; % 初始感染人群数量
R = 0; % 初始康复人群数量
for t = 1:timesteps
newInfections = beta * S * I / N; % 新感染人数
newRecoveries = gamma * I; % 新康复人数
newSusceptibles = mu * R; % 新易感人数
S = S - newInfections + newSusceptibles; % 更新易感人数
I = I + newInfections - newRecoveries; % 更新感染人数
R = R + newRecoveries - newSusceptibles; % 更新康复人数
% 可以在这里绘制结果或记录数据
end
end
SEIR模型(Susceptible-Exposed-Infectious-Recovered):
ini
function SEIRModel(beta, sigma, gamma, N, timesteps)
S = N - 1; % 初始易感人群数量
E = 0; % 初始潜伏人群数量
I = 1; % 初始感染人群数量
R = 0; % 初始康复人群数量
for t = 1:timesteps
newInfections = beta * S * I / N; % 新感染人数
newExposures = sigma * E; % 新潜伏人数
newRecoveries = gamma * I; % 新康复人数
S = S - newInfections; % 更新易感人数
E = E + newInfections - newExposures; % 更新潜伏人数
I = I + newExposures - newRecoveries; % 更新感染人数
R = R + newRecoveries; % 更新康复人数
% 可以在这里绘制结果或记录数据
end
end
SEIRS模型(Susceptible-Exposed-Infectious-Recovered-Susceptible):
ini
function SEIRSModel(beta, sigma, gamma, mu, N, timesteps)
S = N - 1; % 初始易感人群数量
E = 0; % 初始潜伏人群数量
I = 1; % 初始感染人群数量
R = 0; % 初始康复人群数量
for t = 1:timesteps
newInfections = beta * S * I / N; % 新感染人数
newExposures = sigma * E; % 新潜伏人数
newRecoveries = gamma * I; % 新康复人数
newSusceptibles = mu * R; % 新易感人数
S = S - newInfections + newSusceptibles; % 更新易感人数
E = E + newInfections - newExposures; % 更新潜伏人数
I = I + newExposures - newRecoveries; % 更新感染人数
R = R + newRecoveries - newSusceptibles; % 更新康复人数
% 可以在这里绘制结果或记录数据
end
end