基于matlab实现SI、SIS、SIR、SIRS、SEIR、SEIRS流行病模型

在MATLAB中实现SI、SIS、SIR、SIRS、SEIR和SEIRS流行病模型,你可以使用差分方程或微分方程的方式进行建模和模拟。下面是每个模型的基本框架和示例代码:

SI模型(Susceptible-Infectious):
ini

function SIModel(beta, N, timesteps)
S = N - 1; % 初始易感人群数量
I = 1; % 初始感染人群数量

for t = 1:timesteps
    newInfections = beta * S * I / N;  % 新感染人数
    S = S - newInfections;             % 更新易感人数
    I = I + newInfections;             % 更新感染人数

    % 可以在这里绘制结果或记录数据
end

end
SIS模型(Susceptible-Infectious-Susceptible):
ini

function SISModel(beta, gamma, N, timesteps)
S = N - 1; % 初始易感人群数量
I = 1; % 初始感染人群数量

for t = 1:timesteps
    newInfections = beta * S * I / N;      % 新感染人数
    newRecoveries = gamma * I;             % 新康复人数
    S = S - newInfections + newRecoveries; % 更新易感人数
    I = I + newInfections - newRecoveries; % 更新感染人数

    % 可以在这里绘制结果或记录数据
end

end
SIR模型(Susceptible-Infectious-Recovered):
ini

function SIRModel(beta, gamma, N, timesteps)
S = N - 1; % 初始易感人群数量
I = 1; % 初始感染人群数量
R = 0; % 初始康复人群数量

for t = 1:timesteps
    newInfections = beta * S * I / N;      % 新感染人数
    newRecoveries = gamma * I;             % 新康复人数
    S = S - newInfections;                 % 更新易感人数
    I = I + newInfections - newRecoveries; % 更新感染人数
    R = R + newRecoveries;                 % 更新康复人数

    % 可以在这里绘制结果或记录数据
end

end
SIRS模型(Susceptible-Infectious-Recovered-Susceptible):
ini

function SIRSModel(beta, gamma, mu, N, timesteps)
S = N - 1; % 初始易感人群数量
I = 1; % 初始感染人群数量
R = 0; % 初始康复人群数量

for t = 1:timesteps
    newInfections = beta * S * I / N;         % 新感染人数
    newRecoveries = gamma * I;                % 新康复人数
    newSusceptibles = mu * R;                 % 新易感人数
    S = S - newInfections + newSusceptibles;  % 更新易感人数
    I = I + newInfections - newRecoveries;    % 更新感染人数
    R = R + newRecoveries - newSusceptibles;  % 更新康复人数

    % 可以在这里绘制结果或记录数据
end

end
SEIR模型(Susceptible-Exposed-Infectious-Recovered):
ini

function SEIRModel(beta, sigma, gamma, N, timesteps)
S = N - 1; % 初始易感人群数量
E = 0; % 初始潜伏人群数量
I = 1; % 初始感染人群数量
R = 0; % 初始康复人群数量

for t = 1:timesteps
    newInfections = beta * S * I / N;              % 新感染人数
    newExposures = sigma * E;                       % 新潜伏人数
    newRecoveries = gamma * I;                      % 新康复人数
    S = S - newInfections;                           % 更新易感人数
    E = E + newInfections - newExposures;            % 更新潜伏人数
    I = I + newExposures - newRecoveries;            % 更新感染人数
    R = R + newRecoveries;                           % 更新康复人数

    % 可以在这里绘制结果或记录数据
end

end
SEIRS模型(Susceptible-Exposed-Infectious-Recovered-Susceptible):
ini

function SEIRSModel(beta, sigma, gamma, mu, N, timesteps)
S = N - 1; % 初始易感人群数量
E = 0; % 初始潜伏人群数量
I = 1; % 初始感染人群数量
R = 0; % 初始康复人群数量

for t = 1:timesteps
    newInfections = beta * S * I / N;              % 新感染人数
    newExposures = sigma * E;                       % 新潜伏人数
    newRecoveries = gamma * I;                      % 新康复人数
    newSusceptibles = mu * R;                       % 新易感人数
    S = S - newInfections + newSusceptibles;        % 更新易感人数
    E = E + newInfections - newExposures;            % 更新潜伏人数
    I = I + newExposures - newRecoveries;            % 更新感染人数
    R = R + newRecoveries - newSusceptibles;         % 更新康复人数

    % 可以在这里绘制结果或记录数据
end

end

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天酷科研

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值