基于matlab实现SI、SIS、SIR、SIRS、SEIR、SEIRS流行病模型

在MATLAB中实现SI、SIS、SIR、SIRS、SEIR和SEIRS流行病模型,你可以使用差分方程或微分方程的方式进行建模和模拟。下面是每个模型的基本框架和示例代码:

SI模型(Susceptible-Infectious):
ini

function SIModel(beta, N, timesteps)
S = N - 1; % 初始易感人群数量
I = 1; % 初始感染人群数量

for t = 1:timesteps
    newInfections = beta * S * I / N;  % 新感染人数
    S = S - newInfections;             % 更新易感人数
    I = I + newInfections;             % 更新感染人数

    % 可以在这里绘制结果或记录数据
end

end
SIS模型(Susceptible-Infectious-Susceptible):
ini

function SISModel(beta, gamma, N, timesteps)
S = N - 1; % 初始易感人群数量
I = 1; % 初始感染人群数量

for t = 1:timesteps
    newInfections = beta * S * I / N;      % 新感染人数
    newRecoveries = gamma * I;             % 新康复人数
    S = S - newInfections + newRecoveries; % 更新易感人数
    I = I + newInfections - newRecoveries; % 更新感染人数

    % 可以在这里绘制结果或记录数据
end

end
SIR模型(Susceptible-Infectious-Recovered):
ini

function SIRModel(beta, gamma, N, timesteps)
S = N - 1; % 初始易感人群数量
I = 1; % 初始感染人群数量
R = 0; % 初始康复人群数量

for t = 1:timesteps
    newInfections = beta * S * I / N;      % 新感染人数
    newRecoveries = gamma * I;             % 新康复人数
    S = S - newInfections;                 % 更新易感人数
    I = I + newInfections - newRecoveries; % 更新感染人数
    R = R + newRecoveries;                 % 更新康复人数

    % 可以在这里绘制结果或记录数据
end

end
SIRS模型(Susceptible-Infectious-Recovered-Susceptible):
ini

function SIRSModel(beta, gamma, mu, N, timesteps)
S = N - 1; % 初始易感人群数量
I = 1; % 初始感染人群数量
R = 0; % 初始康复人群数量

for t = 1:timesteps
    newInfections = beta * S * I / N;         % 新感染人数
    newRecoveries = gamma * I;                % 新康复人数
    newSusceptibles = mu * R;                 % 新易感人数
    S = S - newInfections + newSusceptibles;  % 更新易感人数
    I = I + newInfections - newRecoveries;    % 更新感染人数
    R = R + newRecoveries - newSusceptibles;  % 更新康复人数

    % 可以在这里绘制结果或记录数据
end

end
SEIR模型(Susceptible-Exposed-Infectious-Recovered):
ini

function SEIRModel(beta, sigma, gamma, N, timesteps)
S = N - 1; % 初始易感人群数量
E = 0; % 初始潜伏人群数量
I = 1; % 初始感染人群数量
R = 0; % 初始康复人群数量

for t = 1:timesteps
    newInfections = beta * S * I / N;              % 新感染人数
    newExposures = sigma * E;                       % 新潜伏人数
    newRecoveries = gamma * I;                      % 新康复人数
    S = S - newInfections;                           % 更新易感人数
    E = E + newInfections - newExposures;            % 更新潜伏人数
    I = I + newExposures - newRecoveries;            % 更新感染人数
    R = R + newRecoveries;                           % 更新康复人数

    % 可以在这里绘制结果或记录数据
end

end
SEIRS模型(Susceptible-Exposed-Infectious-Recovered-Susceptible):
ini

function SEIRSModel(beta, sigma, gamma, mu, N, timesteps)
S = N - 1; % 初始易感人群数量
E = 0; % 初始潜伏人群数量
I = 1; % 初始感染人群数量
R = 0; % 初始康复人群数量

for t = 1:timesteps
    newInfections = beta * S * I / N;              % 新感染人数
    newExposures = sigma * E;                       % 新潜伏人数
    newRecoveries = gamma * I;                      % 新康复人数
    newSusceptibles = mu * R;                       % 新易感人数
    S = S - newInfections + newSusceptibles;        % 更新易感人数
    E = E + newInfections - newExposures;            % 更新潜伏人数
    I = I + newExposures - newRecoveries;            % 更新感染人数
    R = R + newRecoveries - newSusceptibles;         % 更新康复人数

    % 可以在这里绘制结果或记录数据
end

end

Sure! Here's an example of a MATLAB code implementation for the SEIR model: ```matlab % SEIR Model Parameters N = 1000; % Total population size beta = 0.3; % Contact rate gamma = 0.1; % Recovery rate sigma = 0.2; % Incubation rate % Initial conditions I0 = 1; % Initial number of infected individuals E0 = 0; % Initial number of exposed individuals R0 = 0; % Initial number of recovered individuals S0 = N - I0 - E0 - R0; % Initial number of susceptible individuals % Time vector tStart = 0; tEnd = 100; tStep = 1; tspan = tStart:tStep:tEnd; % SEIR Model equations dSdt = @(t, S, E, I, R) -beta * S * I / N; dEdt = @(t, S, E, I, R) beta * S * I / N - sigma * E; dIdt = @(t, S, E, I, R) sigma * E - gamma * I; dRdt = @(t, S, E, I, R) gamma * I; % Solve the SEIR equations [~, SEIR] = ode45(@(t, y) [dSdt(t, y(1), y(2), y(3), y(4)); dEdt(t, y(1), y(2), y(3), y(4)); dIdt(t, y(1), y(2), y(3), y(4)); dRdt(t, y(1), y(2), y(3), y(4))], tspan, [S0, E0, I0, R0]); % Plot the results plot(tspan, SEIR(:, 1), 'b', 'LineWidth', 2); hold on; plot(tspan, SEIR(:, 2), 'r', 'LineWidth', 2); plot(tspan, SEIR(:, 3), 'g', 'LineWidth', 2); plot(tspan, SEIR(:, 4), 'm', 'LineWidth', 2); legend('Susceptible', 'Exposed', 'Infected', 'Recovered'); xlabel('Time'); ylabel('Population'); title('SEIR Model Simulation'); ``` This code uses the `ode45` function to solve the differential equations of the SEIR model. The results are then plotted to visualize the dynamics of the susceptible, exposed, infected, and recovered populations over time. Remember to adjust the parameters and initial conditions according to your specific scenario.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天酷科研

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值