基于多策略自适应差分正余弦算法的多机器人路径规划研究
一、多机器人路径规划的基本概念与挑战
多机器人路径规划(Multi-Robot Path Planning, MRPP)旨在为多个机器人规划从起点到终点的无碰撞路径,同时优化系统整体性能指标(如总路径长度、总能耗或任务完成时间)。其核心挑战包括:
- 冲突避免:需解决机器人间的路径交叉、死锁及动态障碍物干扰问题。
- 协同优化:需平衡个体路径最优与系统全局最优的关系,例如通过集中式、分布式或混合式协调机制。
- 动态适应性:在动态环境中实时调整路径,处理环境变化和通信延迟等约束。
二、差分正余弦算法(SCA)的改进策略
传统正弦余弦算法(SCA)利用正弦和余弦函数的周期性调整搜索方向,但存在收敛速度慢、易陷入局部最优的缺陷。多策略自适应差分正余弦算法(Multi-Strategy Adaptive Differential Sine Cosine Algorithm, MSADSCA) 通过以下改进提升性能:
-
差分进化(DE&#x