【多机器人路径规划】基于多策略自适应差分正余弦算法实现多机器人路径规划研究附Matlab代码

基于多策略自适应差分正余弦算法的多机器人路径规划研究

一、多机器人路径规划的基本概念与挑战

多机器人路径规划(Multi-Robot Path Planning, MRPP)旨在为多个机器人规划从起点到终点的无碰撞路径,同时优化系统整体性能指标(如总路径长度、总能耗或任务完成时间)。其核心挑战包括:

  1. 冲突避免:需解决机器人间的路径交叉、死锁及动态障碍物干扰问题。
  2. 协同优化:需平衡个体路径最优与系统全局最优的关系,例如通过集中式、分布式或混合式协调机制。
  3. 动态适应性:在动态环境中实时调整路径,处理环境变化和通信延迟等约束。
二、差分正余弦算法(SCA)的改进策略

传统正弦余弦算法(SCA)利用正弦和余弦函数的周期性调整搜索方向,但存在收敛速度慢、易陷入局部最优的缺陷。多策略自适应差分正余弦算法(Multi-Strategy Adaptive Differential Sine Cosine Algorithm, MSADSCA) 通过以下改进提升性能:

  1. 差分进化(DE&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天酷科研

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值