【ICEEMDAN】基于自适应完备经验模态分解CEEMDAN算法实现ECG信号去噪附matlab代码

% 导入ECG信号数据(假设为单通道信号)
load(‘ecg_signal.mat’); % 替换为实际的ECG信号数据文件

% 设置CEEMDAN算法的参数
numIMFs = 10; % IMF的数量
maxIterations = 100; % 最大迭代次数

% 对ECG信号进行CEEMDAN分解
imfs = ceemdan(ecg_signal, numIMFs, maxIterations);

% 提取噪声信号(最后一层IMF)
noise = imfs(end, 😃;

% 重构去噪后的信号
denoised_ecg = sum(imfs(1:end-1, 😃, 1);

% 可视化原始信号和去噪结果
t = 1:length(ecg_signal);
figure;
subplot(2,1,1);
plot(t, ecg_signal);
title(‘原始ECG信号’);
xlabel(‘采样点’);
ylabel(‘幅值’);
subplot(2,1,2);
plot(t, denoised_ecg);
title(‘去噪后的ECG信号’);
xlabel(‘采样点’);
ylabel(‘幅值’);

% 定义CEEMDAN函数
function imfs = ceemdan(signal, numIMFs, maxIterations)
imfs = zeros(numIMFs, length(signal));

for i = 1:numIMFs
    imf = emd(signal, 'MaxNumIMF', 1, 'StopPage', 'off', 'Interpolation', 'spline');
    imfs(i, :) = imf;
    signal = signal - imf;
end

residue = signal;
imfs(numIMFs+1, :) = residue;

for i = numIMFs+2:maxIterations
    imf = emd(residue, 'MaxNumIMF', 1, 'StopPage', 'off', 'Interpolation', 'spline');
    residue = residue - imf;
    imfs(i, :) = residue;

    if sum(abs(imf)) == 0
        break;
    end
end

imfs(i+1:end, :) = [];

end

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天酷科研

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值