以下是基于长短记忆神经网络(LSTM)在MATLAB中实现电池 SOH(State of Health)预测的示例代码。该代码使用 B0005 和 B0006 两个数据集进行训练和测试。
matlab
复制
% 导入数据集
load(‘B0005.mat’); % 导入B0005数据集
load(‘B0006.mat’); % 导入B0006数据集
% 合并数据集
combinedData = [B0005; B0006];
% 数据预处理
X = combinedData(:, 2:end-1); % 特征数据
Y = combinedData(:, end); % 目标(SOH)数据
% 归一化处理
Xnorm = normalize(X);
Ynorm = normalize(Y);
% 划分训练集和测试集
trainRatio = 0.8; % 训练集比例
trainSize = round(trainRatio * size(Xnorm, 1));
Xtrain = Xnorm(1:trainSize, 😃;
Ytrain = Ynorm(1:trainSize, 😃;
Xtest = Xnorm(trainSize+1:end, 😃;
Ytest = Ynorm(trainSize+1:end, 😃;
% 构建LSTM模型
inputSize = size(Xtrain, 2); % 输入特征维度
numHiddenUnits = 200; % LSTM隐藏单元数量
outputSize = 1; % 输出维度
layers = [ …
sequenceInputLayer(inputSize)
lstmLayer(numHiddenUnits)
fullyConnectedLayer(outputSize)
regressionLayer];
% 设置训练选项
options = trainingOptions(‘adam’, …
‘MaxEpochs’, 100, …
‘MiniBatchSize’, 32, …
‘InitialLearnRate’, 0.001, …
‘LearnRateSchedule’, ‘piecewise’, …
‘LearnRateDropPeriod’, 50, …
‘LearnRateDropFactor’, 0.1, …
‘GradientThreshold’, 1, …
‘Shuffle’, ‘every-epoch’, …
‘Verbose’, 0);
% 训练LSTM模型
net = trainNetwork(Xtrain’, Ytrain’, layers, options);
% 预测测试集数据
YPred = predict(net, Xtest’);
YPred = YPred’;
% 反归一化处理
YPred = rescale(YPred, min(Y), max(Y));
Ytest = rescale(Ytest, min(Y), max(Y));
% 计算均方根误差(RMSE)
rmse = sqrt(mean((YPred - Ytest).^2));
% 绘制预测结果与真实值的对比图
figure;
plot(Ytest, ‘LineWidth’, 2);
hold on;
plot(YPred, ‘LineWidth’, 1.5);
legend(‘真实值’, ‘预测值’);
xlabel(‘样本’);
ylabel(‘SOH’);
title(‘电池SOH预测结果’);
grid on;
% 显示均方根误差
disp(['均方根误差(RMSE): ', num2str(rmse)]);