适合初学者的入门介绍,了解多目标优化的核心概念,解决在多目标任务中应用一维优化的问题以及多目标方法在许多现实生活示例中的有用性。
损失解空间可视化 [2]
机器学习中的大多数任务都有单一的目标函数,例如图像分类、图像字幕、电影评级等。但也有一些复杂的问题,如药物发现、超参数调整,单一的目标函数不足以得到解空间中的最优解。这就是多目标优化发挥作用的地方。
解空间是满足所有给定约束的给定优化问题的所有可能可行值的集合。
在我们简要概述多目标优化及其令人难以置信的应用之前,让我们首先深入了解优化,然后是单目标优化,最后深入了解多目标优化。
优化和单目标优化
所有深度学习算法都使用优化算法,帮助网络根据用例最大化或最小化目标函数。一般来说,优化是指通过改变x 来最小化或最大化某个函数F(x)的任务,其中“x”是输入 [1]。
图片
图 1:输入映射到输出。
例如,我们想要建立一个狗 🐶 vs 猫 😺 图像分类模型。我们已经准备好了数据集。我们希望模型能够准确地对图像进行分类,这意味着我们希望模型预测精度最大化;换句话说,我们也可以重新定义我的目标,说我们希望损失最小化。无论我们想要最大化准确率还是最小化损失,模型的目标都达到了。所以目标只有一个。这称为单目标优化。
多目标优化
至少有两个目标函数需要同时优化的优化问题称为多目标优化。