基于多目标人工蜂鸟算法(MOAHA)的移动机器人路径规划研究:MATLAB实现与分析
一、多目标人工蜂鸟算法(MOAHA)概述
1. 算法定义与基本原理
MOAHA是人工蜂鸟算法(AHA)的多目标扩展版本,模拟蜂鸟的觅食行为,结合动态消除拥挤距离机制(DECD)和非支配排序策略,以解决多目标优化问题。其核心机制包括:
- 三种飞行模式:轴向、对角线和全向飞行,分别对应不同的搜索策略,平衡全局探索与局部开发。
- 三种觅食策略:引导觅食(目标导向搜索)、领地觅食(局部优化)和迁徙觅食(跳出局部最优)。
- 外部存档管理:采用DECD维护帕累托前沿(Pareto Front),通过拥挤距离筛选非支配解,确保解的多样性和收敛性。
2. 算法优势
- 低计算负担:相较于传统多目标算法(如MOPSO、NSGA-II)