【机器人】基于多目标人工蜂鸟算法MOAHA的移动机器人路径规划研究MATLAB

基于多目标人工蜂鸟算法(MOAHA)的移动机器人路径规划研究:MATLAB实现与分析

一、多目标人工蜂鸟算法(MOAHA)概述

1. 算法定义与基本原理
MOAHA是人工蜂鸟算法(AHA)的多目标扩展版本,模拟蜂鸟的觅食行为,结合动态消除拥挤距离机制(DECD)和非支配排序策略,以解决多目标优化问题。其核心机制包括:

  • 三种飞行模式:轴向、对角线和全向飞行,分别对应不同的搜索策略,平衡全局探索与局部开发。
  • 三种觅食策略:引导觅食(目标导向搜索)、领地觅食(局部优化)和迁徙觅食(跳出局部最优)。
  • 外部存档管理:采用DECD维护帕累托前沿(Pareto Front),通过拥挤距离筛选非支配解,确保解的多样性和收敛性。

2. 算法优势

  • 低计算负担:相较于传统多目标算法(如MOPSO、NSGA-II)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天酷科研

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值