物理主导的神经网络,用于电池热过程时空建模
一、引言
1.1、研究背景和意义
电池作为现代电子设备、新能源汽车等的关键能源供应部件,其性能与安全直接影响到整个系统的可靠性与安全性。电池的热管理是电池管理系统中的核心问题之一,合理的温度控制不仅可以延长电池寿命,还能有效防止热失控等安全问题的发生。因此,开发精确的电池热模型,对于优化电池设计、提升电池性能以及确保电池安全运行具有重要意义。
1.2、研究现状
目前,电池热模型的研究主要采用两种方法:基于物理的模型和基于数据的模型。基于物理的模型如有限元分析(FEM)等,虽然能够提供较高的预测精度,但计算复杂,耗时较长,且对计算资源要求高。基于数据的模型,如人工神经网络(ANN),虽然能够快速处理大量数据,但在处理复杂的物理过程时,其解释性和预测精度往往不足。
1.3、研究目的与内容
为了解决现有方法的不足,本文提出了一种物理主导的神经网络方法。该方法将物理定律与神经网络结合,既保留了物理模型的解释性,又具备神经网络处理复杂数据的能力。通过这种方法,我们可以更准确地模拟电池在工作过程中的热行为