学生姓名 | 学号 | ||
题目 | 基于Hadoop的旅游景点推荐系统的设计与实现 | ||
1.课题研究立项依据 (1)课题研究背景 我国网民的人数持续平稳增长,互联网模式不断创新、各个旅游软件间的相互竞争等,这些都促使用户上网的人数越来越多。社会科学的不断进步使得大量的数据呈现在众多用户面前,用户很难在其中找到符合自己兴趣爱好的并且时间吻合的旅游景点。
根据国家旅游局统计的数据报告显示,每年都比前一年的国内旅游人数有所增长。而许多用户都是在软件上搜索想要去的旅游景点,同时,点开网友在其旅游景点评论区下写的感想和拍的照片,看看旅游景点是否有趣、是否真真正正的值得去旅游。从而,用户自己制作出旅游路线。
我国的旅游景点数不胜数,大好河山,美不胜收,但各类旅游软件为用户提供的服务千差万别。若用户需上网查询各地的旅游景点、住宿以及美食,会花费用户大量的时间,也许最终也得不出什么结论。该推荐系统可以提供用户搜索框里任一地点的五星到一星的旅游景点推荐,顺带附近的美食和酒店推荐,简单明了。
国内:推荐系统可追溯到认知科学、相似理论等领域的研究。在二十世纪九十年代早期,人们开始对推荐系统宅开研究,早期的推荐系统仅仅通过推荐算法将用户感兴趣的商品推荐给用户。在二十世纪中期,推荐系统被作为一门新颖的学科,得到了广泛关注。综上,推荐系统在垂直领域已经取得了突破性的进展。 国外:国外的科技是相对较发达的,在二十世纪九十年代早期,国外就在Tapestry系统中第一次引用了协同过滤系统。在二十一世纪初期开始,就设计了基于案例的旅游景点推荐系统,融合了推理和多准则决策技术。
本系统是基于Hadoop的旅游景点推荐系统的设计与实现,推荐系统工作流程为:启动系统进入注册登录界面,根据用户不同的注册方式进行登录,所有用户都能浏览主页面。管理员通过用户的住址、喜欢的城市、喜爱的美食、用户历史搜索的记录和同类型用户喜爱和搜索的记录,来推荐旅游景点和旅游路线。 主要实现的预期成果有以下几个板块:用户个人资料板块、定位所在城市旅游景点板块、全国各地旅游景点模块、国外各地旅游景点模块、人工客服模块。其中每个旅游景点又分为以下几个板块:评论区板块、人文历史板块、拍照打卡胜地板块、美食板块、旅游景点路线安排模块(天气、交通情况、时间安排等)。 3.课题的研究方案 具体研究方案如下:1、收集资料:利用互联网查询研究背景和意义,阐述国内外推荐系统研究的现状。并对广大网友进行问卷调查。2、概述推荐系统:发展历史,对推荐系统进行分类,介绍协同过滤推荐。3、需求分析:对所有的旅游景点的推荐系统工作流程进行需求分析,并掌握广大用户的具体需求。4、详细设计:对旅游推荐系统的各个板块的功能进行规划设计,为板块功能的实现做准备。5、代码设计:编写运行代码,使各个板块实现它们的具体功能。6、调试运行:查看系统是否可以正常运行。7、运行和维护:对系统有漏洞的地方进行维护,可以使系统长期运行。 4.研究进度安排 2021年11月5日—2021年11月7日 毕业设计选题 2021年11月8日—2021年11月28日 文献综述及开题 2021年11月29日—2022年4月30日 毕业设计和毕业设计说明书撰写 2021年12月22日 初期检查 2022年3月16日 中期检查 2022年4月20日 终期检查 2022年5月1日—6月12日 查重、审阅、答辩、成绩评定、设计归档 5.参考文献 [1]王东. 基于用户兴趣与关注度的旅游路线推荐研究[J]. 电脑知识与技术,2018,14(1):18-19,22. [2]尹书华,傅城州. 基于百科大数据的旅游景点推荐系统应用研究[J]. 旅游论坛,2017,10(3):107-115. [3]张富国,曾步鑫,宋祥雨. 国外个性化旅游推荐研究现状[J]. 科技广场,2017(9):26-32. [4]王萍,王明松. 基于Hadoop的旅游景点推荐系统的设计与实现[J]. 信息与电脑,2020,32(4):86-87. [5]麻风梅,高文. 安康旅游景点推荐系统的设计与开发[J]. 安康学院学报,2015,27(3):116-119. [6]乔向杰,张凌云. 近十年国外旅游推荐系统的应用研究[J]. 旅游学刊,2014,29(8):117-127. [7]万畅,何劲耘. 粤港澳大湾区背景下横琴智慧旅游推荐系统研究[J]. 湖南工业职业技术学院报,2019,19(6):17-21. [8]徐永康,高文超,廖宏科,等. 基于Android的个性化旅游路线规划系统设计与实现[J]. 电脑知识与技术,2021,17(24):87-89. [9]李维. 基于案例推理的浙江旅游智能推荐系统研究[J]. 中国集体经济,2019(32):124-126. [10]李雅美,王昌栋. 基于标签的个性化旅游推荐[J]. 中国科学技术大学学报,2017,47(7):547-555. [11]虞娟. 基于本体的CBR及其在旅游产品智能推荐系统的应用研究[J]. 哈尔滨师范大学自然科学学报,2013,29(6):67-70. [12]DEJIN TANG, XIAOMING ZHOU. DESIGN AND VERIFICATION OF REMOTE SENSING IMAGE DATA CENTER STORAGE ARCHITECTURE BASED ON HADOOP[C]. //ISPRS TC III Mid-term Symposium:Developments ,Technologies and Applications in Remote Sensing (国际摄影测量与遥感学会“遥感:技术、发展、应用”国际学术会议) 论文集. 2018:1639-1642. [13]张舜尧,常亮,古天龙,等. 基于轨迹挖掘模型的旅游景点推荐[J]. 模式识别与人工智能,2019,32(5):463-471. [14]史睿瑶. 基于协同过滤算法的旅游推荐系统的设计与实现[J]. 电脑知识与技术,2020,16(35):64-66. [15]ZHAO YUFENG, LI XINWEI. Design and Implementation of Music Recommendation System Based on Hadoop[C]. //The 2nd International Conference of Sensor Network and Computer Engineering(第二届传感器网络与计算机工程国际会议)(ICSNCE 2018)论文集. 2018:183-189. | |||
指导教师意见(对本课题的深度、广度、工作量、研究方案及进度安排的意见) 指导教师(签字): 年 月 日 | |||
教研室审查意见(是否同意指导教师意见) 教研室主任(签字): 年 月 日 |
基于Hadoop的旅游景点推荐系统的设计与实现开题报告
最新推荐文章于 2024-08-21 18:18:15 发布