雷达通信一体化波形设计开题报告

 毕业设计题目

雷达通信一体化波形设计

学生姓名

学号

指导教师

职称

  1. 课题背景与意义

随着现代技术的快速发展,通信服务不断增加导致移动数据流量的增长只能通过 更宽带宽、更高吞吐量的系统来适应。这种趋势导致无线频谱持续拥塞, 同时随着6G

时代的到来,无线通信领域的各种新兴应用不断增加部署,这对于有限频谱资源的需求不断增大。现代无线通信系统需要对现有的频谱分配方式进行扩展来缓解频谱拥塞以及实现高质量、高速率的通信服务,这对于未来几代无线通信系统的顺利发展至关重要[1]。雷达探测和无线通信均是无线电领域最为突出的应用,在大多数情况下两系统均是独立设计与开发的,浪费了宝贵的频谱资源。频谱短缺以及多样化应用的出现激发了联合雷达和通信系统的研究,具有共同频谱和硬件资源的雷达与通信系统协同设计,预示着一个能够有效利用频谱资源的新时代[2]

雷达系统与通信系统的结合以小型化设备和高频谱效率的特点得到了工业界和学术界的广泛关注[3][4]5G高速通信和高性能雷达所产生的需求以及未来6G不断激发的新领域,都促使雷达通信一体化系统快速发展[5]DFRC系统使用相同的硬件和信号同时执行目标检测、跟踪和数据通信[6],通过将雷达和通信功能集成到单个设备,有望在成本、尺寸和占用频谱方面提供优势。DFRC系统中的雷达组件将为电信网络添加传感工具,具有用于区域监视、搜索和救援以及智能交通的潜力[7],这对于超越第五代通信系统非常重要。事实上,许多不同的技术与应用都可以使用雷达通信一体化信号,例如文无源雷达用于空中、车辆甚至海上交通管制[8][9];以及已经提出的使用个人移动设备的通信信号作为移动雷达进行内部映射[10];还有在交通系统中考虑使用雷达和使用相同信号进行车辆通信[11];传感和通信是物联网设备的内在功能,这两种功能的融合将是提供功能多元化、应用多样化,并能够降低生产成本的关键步骤。

DFRC系统缓解带宽竞争的直接方法是通过动态频谱分配和干扰管理。传统的共存考虑了雷达和通信作为完全独立系统运行的场景,监管机构主要通过分配不同的频段以确保没有干扰。如果不同服务使用相同的频谱,则操作必须满足保护要求,由监管机构通过授予指定专属频段或保护方法,且收发器彼此分离完成任务。认知共存方

法中,雷达和通信仍然是服务于不同目的的不同系统,同样由监管机构或认知技术授予干扰管理办法。

与传统的共存相比,认知共存以复杂性为代价提高了频谱效率,可以更有效地暂时或永久地共享同一频带。协同设计方法摆脱了传统上获取频谱资源的方式,旨在一体化系统,共享波形和硬件共同执行雷达传感和通信功能。这是DFRC系统中最主流的方法,具有出色的特性,例如低成本和频谱使用优化。通过协同设计实现雷达和通信功能的融合将是DFRC系统的潜力所在,这将不仅能够提供基于无线通信的额外功能,也是出于在未来几代无线网络中集成环境感知能力的需求[12]

  1. 国内外研究现状

Jankiraman等人首次提出了多载波概念的雷达,多个子载波窄带信号组成发射信号,每个子载波的中心频率不同,达到了宽带雷达的高分辨力[13]。迈阿密大学的Van GenderenD.Garmatyuk等人,利用软件无线电技术,提出了基于OFDM信号的雷达通信一体化系统,并实现了合成孔径雷达(S Synthetic Aperture RadarSAR)成像,该波形在SAR系统中具有分辨力高、抗干扰能力强的特点。Levanon团队在OFDM信号基础上提出了多载波相位编码(MCPC)信号,作者研究了单脉冲、连续波和脉冲序列三种形式信号的特性,MCPC信号的副载波由构成互补集的M个不同序列进行相位调制,从而得到具有低旁瓣的模糊函数,信号的功率谱平坦且频谱利用率高,但是信号受多普勒频移的影响较大。Dokhanchi1等研究者给出OFDM信号一体本化系统仿真的具体参数,并利用迭代的方法对参数进行了估计[14]

2012年,李小白,杨瑞娟等考虑完全互补码的几个特性,提出了一种串行矩阵展开的方法来构造新的序列,这种相关性的特性不仅可以避免不同用户之间的相互干扰,而且可以提高用户的容量。仿真结果表明,用扩展方法构造的序列具有较好的抗回波蚀特性[15]

2013年李晓柏,杨瑞娟,程伟等针对雷达通信一体化信号设计中存在的不兼容和互干扰问题,根据信号能量共享的原则,提出了基于频分准正交多载波Chirp信号的雷达通信一体化波形及其相应的系统实现方法。通过理论分析和仿真结果表明在多载波频谱重叠率为20%的情况下,一体化信号能够满足雷达的常规探测,并且具有较低的误码特性[16]。

2015年,刘志鹏提出了二重迭代线性预测方法,仿真结果证明了提出的方法的正确性。还提出了基于正负线性调频率的一体化工作模式,在该工作模式下,雷达主站发射的信号采用线性调频率为正的一体化波形,而通信从站采用线性调频率为负的一体化波形,由于正负线性调频率的一体化波形具有准正交性,故二者干扰性非常小[17]。

2017年,杨云飞,马晓岩,杨瑞娟等提出了基于LFM与CPM技术的雷达通信一 体化信号,并且以码元脉冲为矩形脉冲的CPM-LFM信号举例,分析了雷达探测性能。研究结果表明,CPM-LFM一体化信号具有包络恒定、相位连续的特点,与LFM信号具备同样的距离及多普勒分辨力,能够在携带通信信息后实现雷达探测功能[18]。

2019年许永鑫提出了采用光OFDM信号实现双功能的共享波形设计,通过增强通信数据的相关性改善距离模糊函数,并且研究了不同调制方式对测距性能的影响。仿真结果表明,该设计的两种一体化信号满足实际应用需求。所提出的针对光OFDM一体化信号的高分辨率算法相比原有算法,测距/测速精度和分辨率均有明显提高[19]。

  1. 研究内容

  在OTFS一体化系统中,信号将在时延-多普勒域进行处理。在系统发射端,数据信息被视为时延-多普勒域中的点,每个时延-多普勒域的数据信息经过逆辛有限傅里叶变换(ISFFT)被分布到时间-频率域,然后利用Heisenberg变换进行多载波调制。数据信息经过无线传输后,在接收端利用Wigner变换对其进行多载波解调,接着再进行辛有限傅里叶变换(SFFT)将数据最终恢复为时延-多普勒域数据信息。ISFFT与SFFT都可以通过两次一维的傅里叶变换或逆傅里叶变换得到,这使得信号处理的复杂度大大降低,并且可以在现有多载波调制方法的基础上得到OTFS。如图3.1所示。

图3.1  OTFS系统框图

  1. 研究步骤
  1. 设计发送端,将输入的通信数据信息流进行串并转换后形成N路并行数据流,对数据进行ISFFT变换,将时延-多普勒的数据符号映射至时间-频率域,得到N路数据流。对数据流进行Heisenberg变换得到基带信号。如图4.1所示。

图4.1  发射端信号变换

  1. 设计接收端,在接收端利用Wigner变换对其进行多载波解调,接着再进行辛有限傅里叶变换(SFFT)将数据最终恢复为时延-多普勒域数据信息。如图4.2所示。

图4.2  接收端信号变换

  1. MATLAB仿真。通过选择不同子载波数和时隙数对模糊函数进行仿真,通过对比距离模糊函数和速度模糊函数,分析参数改变对性能的影响。两种方法:一是控制子载波数不变,改变时隙数,调制方式选择4PSK,观察时隙数的改变对旁瓣的影响并得出结论。另一种是时隙数不变,改变子载波数,调制方式依然是4PSK,观察子载波数改变对旁瓣的影响并得出结论。

5、参考文献

  1. Hassanien A, Amin M G, Aboutanios E, et al. Dual-Function Radar Communica tion Systems: A Solution to the Spectrum Congestion Problem[J]. IEEE Signal Processing Magazine, 2019, 36(5): 115-126.
  2. Mishra K V, Shankar M B, Koivunen V, et al. Toward millimeter-wave joint radar communications: A signal processing perspective[J]. IEEE Signal Processing Magazine, 2019, 36(5): 100-114.
  3. Liu F, Masouros C, Petropulu A P, et al. Joint radar and communication design: Applications, state-of-the-art, and the road ahead[J]. IEEE Transactions on Communica tions, 2020, 68(6): 3834-3862.
  4. Zheng L, Lops M, Eldar Y C, et al. Radar and Communication Coexistence: An Overview: A Review of Recent Methods[J]. IEEE Signal Processing Magazine, 2019, 36(5): 85-99.
  5. Leyva L, Castanheira D, Silva A, et al. Cooperative Multiterminal Radar and Communication: A New Paradigm for 6G Mobile Networks[J]. IEEE Vehicular Technology Magazine, 2021, 16(4): 38-47.
  6. Mishra K V, Bhavani Shankar M, Koivunen V, et al. Toward Millimeter-Wave Joint Radar Communications: A Signal Processing Perspective[J]. IEEE Signal Processing Magazine, 2019, 36(5): 100-114.
  7. Sun S, Petropulu A P, Poor H V. MIMO radar for advanced driver-assistance systems and autonomous driving: Advantages and challenges[J]. IEEE Signal Processing Magazine, 2020, 37(4): 98-117.
  8. Bczyk M K, Samczynski P, Krysik P, et al. Traffic density monitoring using passive radars[J]. IEEE Aerospace and Electronic Systems Magazine, 2017, 32(2): 14-21.
  9. Daniel L, Hristov S, Lyu X, et al. Design and Validation of a Passive Radar Concept for Ship Detection Using Communication Satellite Signals[J]. IEEE Transactions on

for Ship Detection Using Communication Satellite Signals[J]. IEEE Transactions on  Aerospace and Electronic Systems, 2017, 53(6): 3115-313.

  1. Guidi F, Guerra A, Dardari D. Personal Mobile Radars with Millimeter-Wave Massive Arrays for Indoor Mapping[J]. IEEE Transactions on Mobile Computing, 2016, 15(6): 1471-1484.
  2. Ma D, Shlezinger N, Huang T, et al. Joint Radar-Communication Strategies for Autonomous Vehicles: Combining Two Key Automotive Technologies[J]. IEEE Signal Processing Magazine, 2020, 37(4): 85-97.
  3. 刘凡,袁伟杰,原进宏等. 雷达通信频谱共享及一体化:综述与展望[J]. 雷达学报,2021,10(R20113):467.
  4. 邓忆秋. 基于分数傅里叶变换的雷达通信一体化信号设计[D]. 哈尔滨工业大学,2018.
  5. Dokhanchi S H, Shankar M R B, St ifter Tet al. OFDM-based automotive joint radar- communication system[C]. 2018: 0902-0907.
  6. Li X B , Yang R J , Zhang Z Q , Cheng W. Research of Constructing Method of Complete Complementary Sequence in Integrated Radar and Communication[C]. Institute of Electrical and Electronics Engineers, 2012: 1797-1800.
  7. 李晓柏,杨瑞娟,程伟. 基于频率调制的多载波Chirp信号雷达通信一体化研究[J]. 电子与信息学报,2013,35(02):406-412.
  8. 刘志鹏. 雷达通信一体化波形研究[D]. 北京理工大学,2015.
  9. 杨云飞,马晓岩,杨瑞娟,左家骏. CPM-LFM雷达通信一体化共享信号探测性能研究[J]. 空军预警学院学报,2017,31(03):157-161.
  10. 许永鑫. 车载单线激光雷达与通信一体化技术研究[D]. 电子科技大学,2019.

指导教师意见

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值