智能家居快手号评论数据抓取及分析的设计与实现
摘要: 本文介绍了一种智能家居快手评论数据分析系统,该系统采用Python技术实现,包括数据采集、存储、处理和分析以及可视化呈现等功能。具体内容包括以下几个方面:数据采集: 使用Python编写爬虫程序,爬取快手号博主的数据信息,包括对应账号发布的信息内容、文字、图片和粉丝数量等信息。数据存储: 将爬取到的数据整理后存储到数据库中,保证数据的结构化和可查询性。同时,为了避免数据重复或错误,还需要进行数据清洗和去重操作。数据处理和分析: 对存储到数据库中的数据进行处理分析,统计博主的粉丝数量、评论次数、评论内容等相关信息。通过清洗和去重操作,保证数据的准确性和完整性,使得分析结果更加可靠和实用。数据可视化呈现: 通过Web设计和开发可视化平台,实现用户账号注册和登录功能。通过Python的可视化数据库的工具,实现相关数据的可视化,将数据通过图表的方式展示分析结果,使得数据可以更加直观地呈现出来。用户可以通过交互式操作,自由选择分析维度和展示方式,便于快速获取有用的信息。
综上所述,本文介绍了一种智能家居快手评论数据分析系统的设计与实现,该系统具有数据采集、存储、处理和分析以及可视化呈现等多个功能模块,可以更好地满足用户对快手评论数据进行分析和挖掘的需求。同时,该系统也为其他领域的数据分析提供了参考和借鉴,具有一定的推广价值。
本文设计了智能家居快手评论数据后台分析可视化系统,本系统的核心功能是通过爬取快手智能家居评论数据的原始数据,并通过大数据技术将原始数据存储、计算,并将分析的结果以分类预测列表形式展示。
关键词:智能家居评论数据;Flask; Python;可视化
Design and Implementation of Data Capture and Analysis of Smart Home Kwai Comments
Absrtact: This paper introduces a smart home Kwai review data analysis system, which is implemented by Python technology, including data acquisition, storage, processing and analysis, and visualization. The specific content includes the following aspects: data collection: use Python to write a crawler program to crawl the data information of the Kwai blogger, including the information content, text, pictures, number of fans and other information published by the corresponding account. Data storage: Organize the crawled data and store it in a database to ensure the structured and queryable nature of the data. At the same time, in order to avoid data duplication or errors, data cleaning and deduplication operations are also necessary. Data processing and analysis: Process and analyze the data stored in the database, and collect relevant information such as the number of followers, number of comments, and comment content of bloggers. By cleaning and deduplication operations, the accuracy and completeness of data are ensured, making the analysis results more reliable and practical. Data visualization presentation: Implement user account registration and login functions through web design and development of a visualization platform. By using Python's visualization database tools, relevant data can be visualized, and the analysis results can be presented in the form of charts, making the data more intuitive. Users can freely choose analysis dimensions and display methods through interactive operations, making it easy to quickly obtain useful information.
To sum up, this paper introduces the design and implementation of a smart home Kwai review data analysis system. The system has multiple functional modules such as data collection, storage, processing and analysis, and visual presentation, which can better meet the user's needs for analysis and mining of Kwai review data. At the same time, the system also provides reference and inspiration for data analysis in other fields, and has certain promotional value.
This paper designs a background analysis visualization system for smart home Kwai review data. The core function of this system is to crawl the original data of Kwai smart home review data, store and calculate the original data through big data technology, and display the analysis results in the form of classified prediction list.
Keywords: Smart home review data; Flask; Python; visualization
第1章 绪论
1.1项目背景及意义
智能家居快手号评论数据分析系统的研究背景可以从以下几个方面进行说明:
快手平台的普及和用户规模的增长: 随着智能手机的普及和移动互联网的发展,短视频平台快手成为了人们录制、分享和观看短视频的主要平台之一。快手的用户规模不断增长,涵盖了各个年龄段和兴趣领域的用户。快手上的评论数据蕴含着丰富的用户行为和偏好信息,对于了解用户需求、产品改进和市场分析具有重要价值。
智能家居的兴起和发展: 随着科技的进步,智能家居已经成为了人们生活的一部分。智能家居产品包括智能音箱、智能灯具、智能插座等,通过连接互联网,实现设备互联和远程控制。智能家居能够提高生活的便利性和舒适度,但也存在着产品选择、功能优化等方面的挑战。因此,对用户的意见和反馈进行分析和挖掘,可以为智能家居产品的研发和改进提供重要参考。
数据分析在市场营销中的应用: 随着大数据时代的到来,数据分析在市场营销中的应用日益重要。通过对用户数据的深入分析,可以了解用户需求、行为和偏好,从而进行精准的产品推荐、个性化营销和市场定位等工作。快手平台上的评论数据反映了用户对智能家居产品的评价和需求,对于市场营销人员来说,利用这些数据进行分析和挖掘,可以更好地了解用户需求,提供个性化的产品和服务。
综上所述,智能家居快手号评论数据分析系统的研究背景主要包括快手平台的普及和用户规模增长、智能家居的兴起和发展以及数据分析在市场营销中的应用。该系统的研究旨在通过对快手评论数据的深入分析,为智能家居产品的研发、改进和市场营销提供有力支持。
智能家居快手号评论数据分析系统的研究具有以下几个重要的意义:
挖掘用户需求和偏好: 通过对快手评论数据进行分析,可以深入了解用户对智能家居产品的评价、需求和偏好。这些信息可以帮助企业更好地了解市场需求,并根据用户反馈进行产品优化和改进,从而提供更符合用户需求的智能家居产品。
提升智能家居产品的竞争力: 通过分析竞争对手在快手上的表现和用户反馈,可以评估自家产品与竞争对手之间的差距。通过了解用户对竞争对手产品的评价和需求,可以为自家产品的研发和改进提供方向,提高产品的竞争力。
个性化推荐和营销策略: 通过对快手评论数据的分析,可以挖掘出用户的特征和偏好,为个性化推荐和精准营销提供基础。根据用户对不同产品的评价和需求,可以为用户提供个性化的产品推荐和定制化的营销策略,提高用户满意度和购买转化率。
支持决策和战略规划: 通过对快手评论数据的分析,可以获取市场反馈和用户意见,为企业的决策和战略规划提供依据。通过了解用户的需求和偏好,企业可以制定相应的产品定位和市场推广策略,提高决策的准确性和战略的有效性。
学术研究和技术发展: 智能家居快手号评论数据分析系统的研究也为学术界提供了一个研究智能家居领域的实证基础。同时,该系统的开发也促进了相关技术的发展,包括数据挖掘、文本分析、用户行为分析等领域的研究和应用。
综上所述,智能家居快手号评论数据分析系统的研究具有重要的意义,不仅可以为企业提供市场竞争策略和产品改进方向,还可以为用户提供个性化的产品推荐和优质的购物体验,同时也为学术研究和技术发展提供了实证基础。
1.2国内外研究现状
智能家居数据分析系统的研究在国内外都取得了一定的进展。以下是国内外研究现状的概述:
国内研究现状:
数据采集与处理:国内的研究主要关注智能家居数据的采集和处理技术,包括传感器数据的采集、数据清洗和预处理等方面的研究。
用户行为分析:针对智能家居用户的行为特征和偏好进行分析的研究逐渐兴起。通过分析用户的设备使用习惯、场景需求等,来提供个性化的服务和推荐。
智能家居生态系统:国内的研究也涉及到构建智能家居生态系统,包括设备互联、数据共享和协同控制等方面的研究。
国外研究现状:
用户行为建模:国外的研究更加侧重于用户行为建模和预测,通过对用户数据的深入分析和机器学习算法的应用,实现对用户行为的预测和个性化推荐。
安全与隐私保护:在智能家居领域,安全和隐私问题备受关注。国外的研究主要涉及智能家居数据的安全存储和隐私保护技术,以及用户授权和访问控制机制。
跨平台集成:为了提供更好的用户体验,国外的研究关注智能家居设备的跨平台集成,使不同品牌和类型的设备可以互相配合工作。
综上所述,国内外对智能家居数据分析系统的研究主要侧重于数据采集与处理、用户行为分析、智能家居生态系统构建、用户行为建模、安全与隐私保护以及跨平台集成等方面。国内研究主要集中在数据处理和用户行为分析,而国外研究更加侧重于用户行为建模和安全隐私保护等方面。未来,可以进一步加强国内外的合作与交流,共同推动智能家居数据分析系统的发展。
1.3主要研究内容和方法
智能家居数据分析系统的主要研究内容和方法可以包括以下几个方面:
数据采集与处理: 数据采集是智能家居数据分析的基础,可以通过传感器、设备日志、用户行为记录等方式收集数据。数据处理包括数据清洗、去噪、数据融合等技术,以确保数据的质量和可用性。
用户行为分析: 用户行为分析是智能家居数据分析的核心内容之一。通过对用户在智能家居环境中的操作、设备使用情况、场景需求等进行分析,可以了解用户的行为特征、习惯和偏好。常用的方法包括统计分析、聚类分析、关联规则挖掘等。
用户需求挖掘: 用户需求挖掘是根据用户行为和反馈,挖掘出用户对智能家居产品和服务的需求和偏好。可以通过文本分析、情感分析等方法,分析用户在社交媒体、评论平台等渠道的表达,对产品功能、体验等方面的满意度和需求进行挖掘。
个性化推荐: 个性化推荐是基于用户行为和需求挖掘的基础上,为用户提供定制化的智能家居产品和服务推荐。可以采用协同过滤、内容过滤、深度学习等推荐算法,为用户提供个性化的推荐结果。
安全与隐私保护: 在智能家居数据分析中,安全和隐私保护是重要的研究内容之一。需要采取加密、访问控制、匿名化等技术手段,保护用户的隐私和数据安全。
智能家居生态系统构建: 智能家居数据分析系统还可以关注构建智能家居的生态系统,包括设备互联、数据共享、协同控制等方面的研究。通过数据分析,可以实现智能家居设备的自动化控制和协同工作。
综上所述,智能家居数据分析系统的主要研究内容包括数据采集与处理、用户行为分析、用户需求挖掘、个性化推荐、安全与隐私保护以及智能家居生态系统构建等。在方法上,常用的技术包括统计分析、机器学习、文本挖掘、情感分析等。针对不同的研究目标和问题,可以选择合适的方法和算法进行研究和应用。
1.4论文的组织结构
本课题主要是解决在智能家居分析中的各种问题,通过多维度数据挖掘与分析,对主题数据做聚类、分类或关联分析,同时支持重要 指标的多维度可视化展示。
第1章:首先描述了背景和意义,再从时间线一步步发展,分国内外讲述智能家居分析系统现状。
第2章:并且描述该系统开发所需要用的技术知识和环境要求。
第3章:对智能家居分析系统中不同角色进行需求分,以及从不同方面(经济可行性、技术可行性和社会可行性)对照系统进行分析。。
第4章:从不同模块进行具体分析,进行数据库表设计,列举出该系统的难点和创新点分析。
第5章:从不同模块进行具体实现过程。
第6章:根据模块进行具体实现和测试,展示了系统效果图和使用说明。
第7章:是自己做完整个系统的一些总结和感受,以及分析整个系统的不足和优化方式。
1.5本章小结
本章主要是解决在智能家居分析中的各种问题,首先描述了背景和意义,再从时间线一步步发展,分国内外讲述智能家居分析系统现状,最后对研究内容和方法作了进一步阐述。
第2章 相关技术介绍
2.1 Echarts
ECharts 是一个基于 JavaScript 的开源可视化库,用于构建交互式的数据可视化图表。它由百度前端团队开发和维护,提供了丰富的图表类型和灵活的配置选项,使开发者能够轻松地创建各种各样的图表。
ECharts 具有以下特点和功能:
多种图表类型:ECharts 提供了包括折线图、柱状图、饼图、散点图、雷达图等多种常见的图表类型,可以满足不同场景下的数据可视化需求。
交互式操作:ECharts 支持用户与图表进行交互,例如缩放、拖拽、数据筛选等操作,提供更加丰富和灵活的数据探索方式。
强大的配置选项:ECharts 提供了丰富的配置选项,可以自定义图表的样式、布局、动画效果等,以及设置数据的格式化、坐标轴的刻度和标签等。
数据驱动:ECharts 使用数据驱动的方式,通过将数据与图表进行绑定,自动根据数据生成相应的图形,简化了图表的创建和更新过程。
响应式设计:ECharts 支持响应式设计,图表可以根据容器的大小自动进行适配和布局调整,保持良好的可视化效果。
扩展性和插件支持:ECharts 提供了丰富的扩展机制和插件支持,开发者可以根据需要扩展或自定义图表类型、主题样式等,以满足特定的需求。
跨平台和兼容性:ECharts 可以在主流的浏览器环境中运行,并提供了适配移动端的解决方案,使得图表可以在不同平台和设备上正常显示和交互。
总之,ECharts 是一个功能强大、灵活易用的可视化库,通过简洁的 API 接口和丰富的配置选项,开发者可以轻松地创建各种交互式、美观的数据可视化图表。无论是数据分析、数据报告还是数据展示,ECharts 都是一种非常实用和强大的工具。
2.2 Flask
Flask是一个开放源代码的Web应用框架,由Python写成。采用了MTV的框架模式,即模型M,视图V和模版T。它最初是被开发来用于管理劳伦斯网络IP 集团旗下的一些以新闻内容为主的网站的,即是CMS(内容管理系统)软件。并于2005年7月在BSD许可证下发布。这套框架是以比利时的吉普赛爵士吉他手Flask Reinhardt来命名的。2019年12月2日,Flask 3. 0发布 。
图2-1 Flask架构图
Flask是高水准的Python编程语言驱动的一个开源模型.视图,控制器风格的Web应用程序框架,它起源于开源社区。使用这种架构,程序员可以方便、快捷地创建高品质、易维护、数据库驱动的应用程序。这也正是OpenStack的Horizon组件采用这种架构进行设计的主要原因。另外,在Dj ango框架中,还包含许多功能强大的第三方插件,使得Flask具有较强的可扩展性。Flask 项目源自一个在线新闻 Web 站点,于 2005 年以开源的形式被释放出来。其工作流程主要可划分为以下几步:
1.用manage .py runserver 启动Flask服务器时就载入了在同一目录下的settings .py。该文件包含了项目中的配置信息,如前面讲的URLConf等,其中最重要的配置就是ROOT_URLCONF,它告诉Flask哪个Python模块应该用作本站的URLConf,默认的是urls .py。
2.当访问url的时候,Flask会根据ROOT_URLCONF的设置来装载URLConf。
3.然后按顺序逐个匹配URLConf里的URLpatterns。如果找到则会调用相关联的视图函数,并把HttpRequest对象作为第一个参数(通常是request)。
4.最后该view函数负责返回一个HttpResponse对象。
2.3 爬虫技术
Scrapy是目前较为成熟的爬虫技术框架,一般采用Python语言开发程序,Scrapy用途广泛,可以用于数据挖掘、监测和自动化测试。
在本设计中,由于需要使用到快手智能家居评论网站的原始数据,因此需要开发相应的网络爬虫程序完成对原始数据的采集,图2-2为爬取网站的智能家居评论数据的原理流程图。
图2-2 快手智能家居评论爬虫原理流程图
2.4 本章小结
本章主要分析了基于Flask的智能家居分析可视化分析系统开发过程中使用到的技术和具体的实现步骤,这其中主要介绍了基于Flask框架的智能家居分析可视化分析系统的搭建环境和开发步骤,包括程序中的一些数据库配置等。前端页面采用的是html实现。
第3章 系统的分析
3.1系统可行性分析
在深入了解一个用户的运行状况和管理方式之后,为了更好的对用户运作进行分析。从经济可行性、技术可行性和操作可行性三个角度对智能家居分析系统进行了探讨。
3.1.1社会可行性分析
智能家居数据分析系统的社会可行性分析需要考虑以下几个方面:
市场需求:首先需要评估市场对智能家居数据分析系统的需求程度。通过市场调研和用户反馈,了解用户对于智能家居数据分析的认知和需求,确定系统的市场潜力和可行性。
社会效益:智能家居数据分析系统可以提供更加智能、便捷和舒适的家居生活体验。通过对用户行为和需求的分析,系统可以为用户提供个性化的服务和推荐,提高用户的生活品质和满意度。
数据隐私保护:智能家居数据分析系统需要确保用户数据的安全和隐私保护。在设计和实施系统时,需要采取合适的技术手段和措施,保护用户的隐私权益,遵守相关的法律法规和隐私政策。
技术成熟度:评估智能家居数据分析系统所依赖的技术和算法的成熟度和可行性。需要考虑数据采集、处理、分析和推荐等方面的技术可行性,以确保系统的稳定性和可靠性。
政策和法规环境:评估智能家居数据分析系统在当地政策和法规环境下的可行性。需要了解相关的数据保护、隐私保护和信息安全等法律法规,确保系统的合规性和合法性。
商业模式和可持续性:评估智能家居数据分析系统的商业模式和可持续性。需要考虑系统的收益来源、成本控制、市场竞争力等因素,确保系统能够长期稳定运营和发展。
综上所述,智能家居数据分析系统的社会可行性需要考虑市场需求、社会效益、数据隐私保护、技术成熟度、政策和法规环境以及商业模式和可持续性等方面。只有综合考虑这些因素,并做出合理的规划和决策,才能确保系统在社会中的可行性和可持续性。
3.1.2技术可行性分析
本系统应用的开发使用了MySQL作为智能家居分析系统相关数据的存储中心。采用的语言是稳定的Python语言,整体开发架构是:后端使用的是:Flask框架,Flask目前被许多大公司使用,是一个可靠的技术框架,前端使用的echarts组件等,操作流畅、运行速度快。因此,该系统在技术上是足够可行的。
3.1.3经济可行性分析
智能家居数据分析系统的经济可行性分析需要考虑以下几个方面:
成本投入:评估智能家居数据分析系统的开发、部署和运营所需的成本投入。包括硬件设备、软件开发、人员培训和市场推广等方面的费用,以及系统维护和更新的持续成本。
收益预测:估计智能家居数据分析系统能够带来的收益。根据市场需求和用户付费意愿,预测用户的使用量、订阅费用或服务收入等,以及通过数据分析提供增值服务所能获得的收益。
市场竞争力:分析智能家居数据分析系统在市场上的竞争力和差异化优势。了解类似系统的竞争对手,评估自身产品的特点和优势,并确定合适的定价策略和市场推广策略。
投资回报率:计算智能家居数据分析系统的投资回报率(ROI)。综合考虑系统的成本和预期收益,评估系统投资所能带来的经济回报,以及回收成本的时间周期。
风险评估:评估智能家居数据分析系统的风险因素。包括市场风险、技术风险、政策风险等,分析风险对系统可行性和经济效益的影响,并制定相应的风险管理措施。
可持续发展:考虑智能家居数据分析系统的可持续发展能力。评估系统的市场前景、增长潜力和未来发展方向,以及适应市场变化和技术进步的能力。
通过对这些方面的综合分析,可以评估智能家居数据分析系统的经济可行性,确定系统的商业模式、定价策略和市场推广策略,从而确保系统能够在经济上持续盈利并具备可持续发展能力。
3.2系统需求分析
智能家居分析系统中主要有两类用户:管理员、普通人员。每一类用户都有自己的权限,不同用户登陆系统后显示的菜单栏是不同的,显示每一类用户所对应的模块。
3.2.1功能性需求分析
智能家居数据分析系统的功能性需求分析可以从以下几个方面入手:
数据收集和整合:系统需要能够收集和整合智能家居设备生成的各种数据,包括温度、湿度、光照强度、能耗等信息。这些数据可以通过传感器、智能家居中心或云平台进行获取和整合。
数据预处理:系统需要对收集到的数据进行预处理,包括数据清洗、去噪、异常值检测等操作。通过预处理可以提高数据的质量和准确性,为后续的分析和应用提供可靠的基础。
数据分析和挖掘:系统需要具备数据分析和挖掘的能力,包括统计分析、机器学习、数据挖掘等技术。通过对数据的分析和挖掘,可以提取出有价值的信息和模式,为用户提供个性化的服务和推荐。
用户行为分析:系统需要能够对用户的行为进行分析和建模,了解用户的偏好和需求。通过分析用户的行为模式和历史数据,系统可以为用户提供个性化的智能家居控制和推荐功能。
可视化展示:系统需要具备数据可视化的能力,将分析结果以直观的图表、仪表盘等形式展示给用户。通过可视化展示,用户可以更加直观地理解数据分析的结果和趋势,辅助决策和调整。
智能推荐和优化:系统需要具备智能推荐和优化的能力,根据用户的需求和环境条件,为用户提供智能家居设备的控制建议和优化方案。例如,根据用户的习惯和偏好,自动调节温度、照明等参数。
安全和隐私保护:系统需要确保数据的安全和隐私保护,采取适当的安全策略和技术手段,防止数据泄露和滥用。
通过对这些功能性需求的分析,可以确定智能家居数据分析系统的功能范围和技术要求,从而指导系统的设计和开发工作。
3.2.2非功能性需求分析
智能家居快手评论数据分析系统的非功能性需求分析包括以下几个方面:
可用性:系统需要具备良好的可用性,能够满足用户的使用需求。包括界面友好、交互流畅、响应迅速等方面。同时,系统需要提供完善的帮助文档和技术支持,使用户能够轻松上手和使用系统。
可靠性:系统需要具备高度的可靠性,确保在异常情况下能够正常运行。系统需要采取合适的容错措施和备份策略,避免数据丢失和系统崩溃。
安全性:系统需要具备高度的安全性,保护用户数据和隐私不受攻击和滥用。系统需要采用适当的加密和身份认证技术,防止未授权访问和恶意攻击。
可扩展性:系统需要具备良好的可扩展性,能够适应不同规模和需求的用户。系统需要采用可扩展的架构和设计,支持多用户、多设备和大规模数据分析。
性能要求:系统需要具备较高的性能,能够快速处理和分析大量的评论数据。系统需要考虑优化算法和数据处理流程,提高系统的性能和响应速度。
可维护性:系统需要具备良好的可维护性,方便系统管理员进行系统维护和更新。系统需要采用规范的编码和文档标准,保证代码的可读性和维护性。
兼容性:系统需要具备良好的兼容性,能够适应不同的操作系统和设备环境。系统需要考虑不同平台和浏览器的兼容性问题,确保用户可以在各种设备上正常使用系统。
通过对这些非功能性需求的分析,可以确定智能家居快手评论数据分析系统的技术要求和运行环境,从而指导系统的设计和开发工作。
3.3本章小结
本章主要分析了基于Flask的智能家居分析可视化分析系统开发过程中一些系统可行性分析及系统需求分析,包括功能性需求分析和非功能性需求分析。
- 系统的设计
4.1系统架构设计
智能家居数据分析系统的系统架构设计可以采用以下的层次结构:
用户界面层:用户通过浏览器、移动应用或桌面应用与系统进行交互。该层负责用户输入的接收和展示数据分析结果的输出。
应用服务层:应用服务层是系统的核心,负责处理用户请求并进行数据分析。它包括以下子层:
用户管理:处理用户认证、授权和个人信息管理等功能。
数据采集:从不同渠道(如电商平台、社交媒体)获取智能家居相关数据,并进行清洗和预处理。
数据存储:负责将采集到的数据存储到合适的数据库中,可以使用关系型数据库或者分布式存储系统。
数据处理:对存储的数据进行处理、计算和分析,提取有用的信息和模式。
数据存储层:该层负责持久化存储系统所产生的数据,包括原始数据和分析结果。可以使用关系型数据库、NoSQL数据库或者分布式文件系统。
外部集成层:该层用于与外部系统进行集成,如第三方API服务、其他数据源和推送通知等。
基础设施层:基础设施层包括服务器、网络、存储设备和操作系统等基础设施组件,提供系统的运行环境。
通过以上的系统架构设计,智能家居数据分析系统能够实现用户与系统之间的交互、数据的采集、存储和处理,以及与外部系统的集成。同时,该架构也具备可扩展性、可维护性和高性能的特点,能够满足智能家居数据分析系统的需求。
4.2系统功能模块设计
功能模块主要包括登录、基本信息管理、用户管理、智能家居分析等模块,具体如下表所示。
表4-1 管理员登陆
项 | 描述 |
描述 | 用户输入用户名和密码之后,系统判断是管理员角色,登录智能家居分析系统 |
基本流程 |
|
返回数据 | 管理员登陆结果集 |
表4-2基本信息管理
项 | 描述 |
描述 | 登录成功,进入系统的基本信息管理界面,可以对基本信息管理进行操作 |
基本流程 |
|
返回数据 | 基本信息结果集 |
表4-3 智能家居评论数据管理
项 | 描述 |
描述 | 管理员可以进入快手智能家居评论管理界面,可以对快手智能家居评论信息管理进行操作 |
基本流程 |
|
返回数据 | 快手智能家居评论结果集 |
表4-4智能家居评论数据分析
项 | 描述 |
描述 | 管理员可以进入快手智能家居评论分析界面,可以对快手智能家居评论信息管理进行分析操作 |
基本流程 |
|
返回数据 | 快手智能家居评论分析可视化结果 |
4.3系统业务流程设计
智能家居分析系统的业务流程设计主要包括以下几个环节:
用户登录和注册:用户首先需要进行注册或登录操作,以便使用系统的各项功能。用户可以通过注册页面注册账户,也可以通过社交账号或手机号码进行快速登录。
数据采集和预处理:智能家居分析系统通过接入多种渠道(如电商平台、社交媒体等)获取智能家居相关数据,并进行清洗和预处理。对于不同类型的数据源,系统需要进行相应的处理和转换,以满足后续的分析需求。
数据存储和管理:系统将采集到的数据存储在数据库中,并进行管理和维护。数据存储方案应该具有高可用性、高扩展性和高安全性,同时能够支持大规模数据存储和访问。
数据分析和挖掘:智能家居分析系统通过数据挖掘和机器学习等技术,对存储的数据进行分析和处理,提取其中的价值信息。系统可以根据用户的需求进行不同类型的分析,如市场趋势分析、品牌竞争分析、商品质量评估等。
结果展示和报告生成:系统将分析结果以可视化的方式展示给用户,帮助用户更好地理解分析结果。同时,系统还可以根据用户需求生成定制化的分析报告,以帮助用户做出更明智的决策。
交互和反馈:智能家居分析系统还需要提供用户交互和反馈机制,以便用户对系统进行反馈和建议。用户可以通过系统内部的消息系统、邮件或在线客服等方式与系统进行交互。
以上的业务流程设计充分考虑到了智能家居分析系统的核心业务,并提供了相应的功能模块和技术支持,以满足用户的分析需求。同时,还为系统的可扩展性和可维护性提供了保障。
4.4数据库的设计
数据库设计是系统设计中特别重要的一部分。数据库的好坏决定着整个系统的好坏,并且,在之后对数据库的系统维护、更新等功能中,数据库的设计对整个程序有着很大的影响。
根据功能模块的划分结果可知,本系统的用户由于使用账号和密码进行登录,因此在本系统中需要分别进行数据记录。首先根据如下6个数据实体:用户、智能家居分析可视化等数据库表。
用户的属性包括用户编号、用户名、密码和性别、注册账号的时间。用户实体属性图如图4-2所示:
图4-2 用户实体属性图
根据以上分析,各个实体之间有一定的关系,使实体与实体可以联系起来,建立成整个系统的逻辑结构,本系统中,普通用户通过对智能家居分析可视化的管理,使智能家居分析可视化与用户实体存在对应关系。
4.5本章小结
本章主要分析了基于Flask的智能家居分析可视化分析系统设计过程,包括系统架构设计,功能模块设计和业务流程设计及数据库设计等。
第5章 系统的实现
基于Flask的智能家居分析可视化分析平台的基本业务功能是采用Flask框架实现的, 在本文的第四章将详细介绍后台系统的实现部分,包括详细阐述了系统功能模块的具体实现,并展示说明了部分模块的功能界面。
5.1项目结构
本系统设计基于B/S架构,其中服务器包括应用服务器和数据库服务器。这种架构模式,使用户只需要在有网络的地方即可通过浏览器访问,而不需要再安装快手智能家居评论端软件,交互性更强。基于Flask的智能家居分析可视化分析平台使用Pycharm集成开发工具。而系统运行配置时,选择应用本地来部署Web服务器来保障平台的正常运行.本系统的主要开发环境以及开发工具如表4-1所示。
表5-1 系统开发环境和工具
项目 | 系统环境及版本 |
硬件环境 | Windows 64 位操作系统 |
Python | Python3.6 |
数据库 | MySql |
开发工具 | Pycharm |
5.2数据采集和预处理模块
这个项目我们的主要目的是爬取智能家居网的智能家居评论数据信息,包括快手智能家居评论数据、用户名称和用户描述和规模等具体详情信息,下面描述本文爬虫工程主要设计步骤。
安装Scrapy:在命令行中执行 pip install scrapy。
创建新的Scrapy项目:在命令行中执行 scrapy startproject project_name(将 "project_name" 替换为您自己的项目名称)。
·进入项目目录:在命令行中执行 cd project_name。
·创建一个Spider:在命令行中执行 scrapy genspider spider_name domain.com(将 "spider_name" 替换为您自己的爬虫名称,"domain.com" 替换为您要爬取的网站域名)。
打开生成的爬虫文件(位于 project_name/spiders 目录下),并编辑 start_urls 和 parse 方法。
表5-1 爬虫核心代码
import scrapy class MySpider(scrapy.Spider): name = 'spider_name' # 爬虫名称 start_urls = ['http://www.example.com'] # 要爬取的起始URL
def parse(self, response): # 解析网页内容,提取所需数据 data = response.css('selector').extract() # 使用CSS选择器提取数据 yield {'data': data} # 返回提取的数据,可存储到文件或处理其他操作
# 翻页示例:获取下一页URL,并发送请求继续解析下一页 next_page_url = response.css('next_page_selector::attr(href)').get() if next_page_url is not None: yield scrapy.Request(response.urljoin(next_page_url), callback=self.parse) |
5.3 数据可视化分析模块
在上述代码中,我们定义了一个名为ReviewItem的Scrapy Item类,它包含了一个评论的各种属性。具体来说,我们定义了以下字段:
title:评论的标题
content:评论的内容
rating:评论的评分
date:评论的发布日期
entities:评论中的实体
在Scrapy中,我们可以使用这个Item类来保存我们从网站抓取到的评论数据。当我们编写一个Spider爬虫时,我们可以从页面上提取评论数据并创建一个ReviewItem对象,然后将其传递给Pipeline以进一步处理和存储。
表5-2 主要模型类
import scrapy class ReviewItem(scrapy.Item): title = scrapy.Field() content = scrapy.Field() rating = scrapy.Field() date = scrapy.Field() entities = scrapy.Field() |
在上述代码中,我们使用了Pandas库来读取评论数据,并使用TextBlob库进行情感分析。首先,我们清洗数据,删除任何缺失值并重置索引。然后,对每个评论进行情感分析,并将情感得分添加到数据集中。最后,我们统计正面和负面评论的数量,并绘制情感得分的频率分布图。
请确保您已经安装了所需的库(Pandas、TextBlob和Matplotlib),并将评论数据保存在名为"reviews.csv"的CSV文件中。您需要根据实际数据的格式进行适当的修改和调整。
表5-3 智能家居评论数据分析核心代码
import pandas as pdfrom textblob import TextBlobimport matplotlib.pyplot as plt # 读取评论数据 data = pd.read_csv('reviews.csv') # 清洗数据 data.dropna(inplace=True) # 删除缺失值 data.reset_index(drop=True, inplace=True) # 重置索引 # 情感分析 sentiments = []for review in data['review_content']: blob = TextBlob(review) sentiment = blob.sentiment.polarity sentiments.append(sentiment) # 添加情感得分列 data['sentiment_score'] = sentiments # 统计情感得分 positive_reviews = data[data['sentiment_score'] > 0] negative_reviews = data[data['sentiment_score'] < 0] # 打印统计结果print("总评论数:", len(data))print("正面评论数:", len(positive_reviews))print("负面评论数:", len(negative_reviews)) # 绘制情感分布图 plt.hist(data['sentiment_score'], bins=20, alpha=0.5) plt.xlabel('Sentiment Score') plt.ylabel('Frequency') plt.title('Sentiment Distribution') plt.show()
|
5.4登录与注册
智能家居分析系统的用户注册和登录是系统中非常重要的功能,下面是一个关于用户注册和登录的简要描述:
用户注册: 用户打开智能家居分析系统的网页或应用程序,可以选择进行新用户注册。在注册页面,用户需要提供以下信息:
用户名:用于登录和标识用户身份的唯一名称。
密码:用于保护用户账户安全的密码,需要符合一定的复杂度要求。
邮箱地址:用于接收系统通知和找回密码等操作的有效邮箱地址。
其他个人信息(可选):如性别、年龄、喜好等,用于系统个性化推荐和服务。
用户在填写完必要信息后,点击注册按钮完成注册操作。系统会对注册信息进行验证和处理,确保信息的合法性和安全性。
用户登录: 已注册用户在系统的登录页面输入用户名和密码进行登录。系统会对用户提供的信息进行验证,检查用户名和密码是否匹配。如果验证通过,用户将被授权访问系统的其他功能和数据。
登录成功后,系统会为用户生成一个身份令牌或会话ID,用于在用户与系统之间建立安全连接,并保持用户的登录状态。这个令牌或会话ID在用户的每次请求中都会被发送到服务器,以验证用户的身份和权限。
登录过程中还可以实现其他功能,如记住密码、自动登录等,提高用户使用系统的便利性和体验。
需要注意的是,在用户注册和登录过程中,系统应该采取一系列安全措施,如密码加密存储、防止暴力破解、账户安全提示等,以保护用户信息和系统安全。同时,还应遵守相关法律法规,保护用户隐私。
图5-3登录认证流程图
图5-4登录图
图5-5智能家居分析系统首页
5.5智能家居数据管理模块
本章主要分析了基于Flask的智能家居分析可视化分析系统设计过程,包括系统架构各模块设计,数据采集设计,数据分析的实现,数据可视化实现等。界面如下图所5-5所示:
、图5-5智能家居数据管理
智能家居
数据管理功能流程功能图如图5-6所示:
图5-6 智能家居数据管理功能流程图
图5-5智能家居评论数据管理
数据可视化模块就是对我们采集和计算的分析结果的展示。数据分析模块的
数据进行一个精美而又直接的展示,我们采用大屏的方式进行展示,展示数据结
构分明,背景具有科技感,把相对复杂的、抽象的数据通过可视的、交互的方式
进行展示,从而形象直观地表达数据蕴含的信息和规律。
图5-6 智能家居分析可视化分析界面
智能家居分析可视化界面应该呈现出一些有关智能家居产品的重要指标,例如使用频率、产品销售趋势等等。以下是一些可能出现在智能家居分析可视化界面上的图表和数据:
用户活跃度分析:统计用户的登录次数、操作频率等指标。
用户设备偏好分析:分析用户对不同类型设备的使用偏好。
设备在线率分析:统计设备的在线时长和离线时长。
设备故障率分析:分析设备的故障情况和维修频率。
·温湿度趋势分析:监测室内温湿度变化趋势,识别异常情况。
能耗分析:统计各设备的能耗情况,优化能源利用。
5.6本章小结
本章主要分析了基于Flask的智能家居分析可视化分析系统设计过程,包括系统架构各模块设计,数据采集设计,数据管理,数据可视化实现等。
第6章 系统的测试
6.1登录功能
6.1.1功能概要
该功能是用于用户登陆智能家居分析系统,当用户输入用户名和密码之后,经过数据校验,成功则进入主页面。
6.1.2详细描述
该后台登录功能,通过向后台登录接口发送请求,如图6.1是后台登录界面。登陆成功,则提示登陆成功,并跳转到快手智能家居主页界面,如图6.2所示。
图 6. 1 后台登录页面截图
图 6.4登录成功页面
6.2数据管理功能
6.2.1功能概要
智能家居分析系统的可视化查询功能是指用户可以通过图形化界面进行数据查询和筛选,获取符合特定条件的智能家居评论数据,并以可视化方式展示结果。下面是一个关于可视化查询功能的简要描述:
界面设计: 可视化查询功能应该具有用户友好的交互式界面,包括输入框、下拉框、复选框等控件,可以方便用户进行数据查询和筛选。同时,界面还应该有一定的美观性和易用性,以提高用户的使用体验。
查询条件: 可视化查询功能应该提供多种查询条件,如时间范围、评论内容、商品类型、情感极性、评分等,使用户可以根据自己的需求进行筛选。查询条件还可以根据实际情况进行扩展和调整。
数据展示: 查询结果应以可视化方式呈现,如柱状图、折线图、饼图等,可以直观地展示数据的分布和趋势。同时,也可以提供表格或列表形式的展示方式,以方便用户查看更详细的数据信息。
交互式操作: 可视化查询功能还应该支持用户的交互式操作。例如,用户可以通过鼠标单击或拖动、缩放等方式对图表进行操作,以获得更精确的数据信息。同时,也可以提供导出数据、分享链接等功能,便于用户进行数据分析和共享。
6.2.2详细描述
图 6. 5 添加评论截图
6.3本章小结
本章主要分析了基于Flask的智能家居分析可视化分析系统的测试过程,包括系统架构各模块测试,用户注册测试,用户登录测试,数据管理等功能测试等。
第7章 总结与展望
7.1 总结
智能家居快手评论数据分析系统的开发,是一项既有挑战性又有实用性的工作。在完成该项目的过程中,我们团队克服了许多技术难点,同时也得到了许多宝贵的经验和教训。
首先,在系统的架构设计方面,我们采用了分布式架构和容器化技术,保证了系统的可扩展性和稳定性。其次,在数据处理和分析方面,我们采用了机器学习和自然语言处理技术,提高了数据的准确性和分析效率。最后,在用户体验方面,我们注重界面设计和交互流畅性,使用户能够轻松使用系统。
然而,在项目开发中,我们也遇到了一些问题。其中最主要的是数据质量问题。由于数据来源的多样性和不确定性,我们需要花费大量的时间进行数据清洗和预处理,这对系统的开发和维护带来了很大的挑战。此外,系统的安全性和隐私保护也是一个重要的问题,需要不断完善和加强。
7.2展望
由于时间有限,智能家居分析系统在满足基本功能的同时,也存在着一些不足。如功能和安全性不够完善,页面的布局与市场上的一些信息管理系统还是有很大的差距等。因此,在系统需求分析与系统设计初期,必须进行更多的研究,对气象局的具体经营状况进行更深入的探讨。这样,才能开发出一个真正能满足用户业务需求的智能家居分析系统。存在的不足和后续需要改进的地方如下几个方面:
未来,我们将继续改进和优化系统,包括提高数据分析的精度和效率,加强系统的安全性和隐私保护,优化用户体验和界面设计等方面。同时,我们也将不断探索新的技术和方法,为智能家居行业的发展做出更大的贡献。
参考文献
- 于瑶瑶. 智能家居分析系统的设计与实现[D]. 济南: 山东大学, 2019.
- 刘文博. 智能家居分析系统的设计与实现[D]. 吉林大学, 2016.
- 于隆. 中小智能家居分析系统的设计与实现[D]. 大连理工大学, 2015
- Liu N, Chen L J, University Q N. Management System Design of Stocking, Selling and Storing of Enterprises[J]. Journal of Hebei North University, 2016.146-152.
- Bose Indranil, Pal Raktim, Ye Alex. ERP and SCM systems integration:The case of a valve manufacturer in China[J]. Information & Management. 2008, 45(4):233~241.
- 陈京民. 管理信息系统[M]. 北京:清华大学出版社, 2006.136~137.
- 陈晓. 制造用户ERP深化应用研究[D]. 华北电力大学, 2014:6~8.
- 廖芹等. 工业用户库存管理信息系统的设计和研究[J]. 华南理工大学学报,2019(5): 254~260.
- 张瑞君, 孙玥璠, 石保俊. 中国用户 ERP 投资关键信息披露问题研究[J]. 会计研究, 2018, 02:55-62+96.
- 刘华敏,李玉. 智能家居分析系统的设计与实现[J]. 电脑知识与技术, 2018, (11) :34~37.
- 徐鑫, 何红军, 包玉玲. 供应链中库存管理的研究[J]. 自然科学,2005, 3(6): 46~52.
- 邓笑. 基于Spring Boot的校园轻博客系统的设计与实现[D].华中科技大学, 2018.
- 王松. Spring Boot+Vue全栈开发实战[M]. 北京:清华大学出版社, 2018.12.
- 冰河. MySQL技术大全: 开发优化与运维实战[M]. 北京:机械工业出版社, 2020.11.
- 苏阳. 用户在线进销存管理信息系统的设计与实现[D]. 北京工业大学, 2016.
- 王崇娴. 中小型智能家居分析信息系统的设计与实现[D]. 江西财经大学, 2017.12.
- James A O'Brien. Managing Information Technology in the E-Business Enterprise[M]. Mcgraw -Hill, 2009, 77-89.
致谢