微软研究院今天推出MatterGen

  每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行! 订阅:https://rengongzhineng.io/


MatterGen标志着科学家发现新材料方式的重大转变。传统方法通常需要筛选数百万种现有化合物,这一过程可能需要耗费数年时间。而MatterGen则通过AI直接生成符合需求的新型材料,就像AI图片生成器根据文字描述创建图像一样。

“生成模型为材料设计提供了一种新范式,可以在给定属性约束的情况下直接生成全新材料,”微软研究院首席研究经理兼该研究负责人谢天(Tian Xie)表示。这项研究发表在《自然》期刊上,他指出:“这是朝着创建通用材料生成模型迈出的重要一步。”

MatterGen与传统方法的区别
MatterGen使用一种名为扩散模型(diffusion model)的专门AI技术,与DALL-E等图像生成器的原理类似,但它针对三维晶体结构进行了适配。系统通过逐步优化原子随机排列,生成符合指定标准的稳定材料。

研究表明,MatterGen生成的材料在新颖性和稳定性方面“是此前AI方法的两倍以上”,而且其结果“比其他方法接近局部能量最低值的可能性高出15倍”。这意味着生成的材料不仅更具实用价值,而且更可能被物理制造。

在一次显著的验证中,研究团队与中国深圳先进技术研究院的科学家合作,合成了由MatterGen设计的新材料TaCr₂O₆。实验结果显示,这种材料的实际特性与AI预测高度一致,证明了系统的实用性。

现实应用:改变能源存储和计算领域的游戏规则
MatterGen的一大亮点在于其灵活性。系统可“微调”以生成具有特定属性的材料,包括特定晶体结构、电子或磁性特性。这使其在设计面向工业应用的专用材料时尤为有价值。

新材料对于推动能源存储、半导体设计和碳捕获等技术至关重要。例如,更好的电池材料可能会加速电动车的普及,而更高效的太阳能电池材料可能会降低可再生能源的成本。谢天解释道:“从工业角度来看,这种潜力是巨大的。人类文明一直依赖于材料创新。如果我们能够利用生成式AI提高材料设计的效率,将有助于加速能源、医疗等行业的进步。”

开源策略助力科学发现
微软已将MatterGen的源代码以开源许可证的形式发布,供全球研究人员使用。这一举措可能加速系统在各科学领域的影响。

MatterGen的开发是微软“AI for Science”计划的一部分,该计划旨在利用AI加速科学发现。该项目还集成到微软Azure Quantum Elements平台中,通过云计算服务让企业和研究人员能够更方便地访问这一技术。

尽管MatterGen带来了显著的进展,专家也提醒,从计算设计的材料到实际应用仍需经过大量测试与优化。虽然系统预测看起来很有希望,但在投入工业生产前,需要经过严格的实验验证。

无论如何,这一技术在利用AI加速科学发现方面迈出了重要一步。正如该项目的资深研究员丹尼尔·祖格纳(Daniel Zügner)所言:“我们致力于开展能够产生积极现实影响的研究,而这只是个开始。”

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值