每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行! 订阅:https://rengongzhineng.io/
今天,Model Context Protocol(MCP)正式开源 https://modelcontextprotocol.io/introduction!这个全新标准旨在帮助AI助手直接连接到数据所在的系统,比如内容存储库、商业工具和开发环境,从而提升前沿模型的响应质量和相关性。
随着AI助手逐渐走入主流,行业内对模型能力的投入持续加码,推动车型推理和质量的飞速提升。然而,即使是最先进的模型也受到数据孤岛和遗留系统的限制,导致模型与数据之间的隔阂难以打破。每接入一个新的数据源都需要专门定制,这让构建真正互联的系统变得异常困难。
MCP正是为了解决这一痛点而生。它为AI系统与数据源的连接提供了一个通用、开放的标准,取代了目前零散的集成方式。通过MCP,AI系统能够更简单、更可靠地获取所需数据,打通了从模型到数据的关键通路。
什么是Model Context Protocol?
MCP是一种开放标准,帮助开发者为数据源与AI驱动的工具之间搭建安全的双向连接。其架构十分简洁:开发者既可以通过MCP服务器共享数据,也可以构建支持MCP的AI应用(MCP客户端),与这些服务器进行交互。
此次发布带来了三个主要组件,为开发者开启MCP世界的大门:
- MCP规范及开发工具包(SDKs)
- Claude桌面应用中的本地MCP服务器支持
- MCP服务器的开源代码库
值得一提的是,Claude 3.5 Sonnet非常擅长快速构建MCP服务器,实现企业和个人将关键数据集快速连接到各种AI工具的能力。为了让开发者轻松上手,此次发布还包含了预构建的MCP服务器,支持Google Drive、Slack、GitHub、Git、Postgres和Puppeteer等主流企业系统。
目前,Block和Apollo等早期用户已经将MCP集成到他们的系统中。而Zed、Replit、Codeium和Sourcegraph等开发工具公司也在探索如何利用MCP提升其平台功能,让AI助手能更好地获取上下文信息,从而在编程任务中生成更精准且实用的代码,减少反复尝试的次数。
Block的首席技术官Dhanji R. Prasanna对MCP的潜力表示高度赞赏。他提到:“在Block,开源不仅仅是一种开发模式,更是推动技术变革的基石。像Model Context Protocol这样的开放技术,就像桥梁一样,将AI与现实应用连接起来,使创新更透明、更具协作性。我们很高兴能够参与这一协议的合作,通过它构建更加智能的系统,让人们从机械式的任务中解放出来,专注于创造性工作。”
MCP如何改变现状?
以往,开发者需要为每种数据源单独开发连接器,而现在只需遵循一个标准协议即可。随着生态系统的不断成熟,AI系统将能够在不同工具和数据集之间保持上下文的连贯性,逐渐替代当前零碎的集成方式,打造更加可持续的架构。
开始使用MCP
开发者现在即可开始构建和测试MCP连接器。现有的Claude for Work用户可以率先通过本地MCP服务器测试,将Claude连接到内部系统和数据集。不久后,还将推出工具包,支持部署远程生产环境下的MCP服务器,为整个组织服务。
具体步骤如下:
- 通过Claude桌面应用安装预构建的MCP服务器
- 按照快速入门指南,搭建你的首个MCP服务器
- 为MCP的开源连接器和实现代码库贡献力量
MCP的发布为AI系统与数据源的融合带来了全新可能,未来或将彻底改变AI助手的能力和应用方式。