每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行! 订阅:https://rengongzhineng.io/
这段深入的反思围绕着一个年轻工程师在AI时代中所面临的核心矛盾:为了追求产出速度,有意牺牲学习深度,但同时也在焦虑未来是否会因此失去长期竞争力。以下是对这段思考内容的第三人称中文转述,不省略任何重要内容,并从报道者的角度重构:
一位年轻的软件工程师坦言,出于提升产出速度的考量,刻意做出了牺牲学习深度的取舍。在当前AI迅速发展的背景下,这种策略虽然带来了显著的工作效率提升,却也伴随着深深的不确定感。他承认,自己在“输出数量”与“学习深度”之间可能并未找到最佳平衡,而这种不确定感主要源于对时间紧迫性的焦虑。面对大语言模型(LLMs)持续升级的现实,他认为自己没有足够的时间去深入学习所有内容。尽管对学习充满热爱,但从趋势来看,他更倾向于最大化短期产出。为了在校外做更多项目,他牺牲了一部分课程中的学习。站在教师视角,这种做法显然是有问题的,但对他自身而言,利弊难以一概而论。
在LLMs崛起之前,深入学习几乎是输出的前提。而通过项目构建来提升编程能力,一直被视为最有效的学习路径。但如今,借助AI,他已经可以在并未完全理解底层实现的前提下完成许多复杂项目。只要对系统架构有一定掌握,通过模型引导与协作,便能完成大量“低垂果实”的任务。他认为,与其说“深度理解”或“创新能力”是瓶颈,不如说是“执行能力”。
但他也承认,自己可能陷入了幻觉,因为目前所做的任务大多属于“易于处理”且“在模型训练分布范围内”的工作。在科研前沿领域,LLMs的作用远远不如人类专家显著。对于真正优秀的程序员而言,他们使用AI模型的方式本质上不同于普通用户。他提出一个重要的问题:未来3至5年内,对于初级工程师而言,LLMs的发展究竟意味着什么?若AI进步的速度远超个人成长,他应如何应对?他形容这种感觉,就像国际象棋大师卡斯帕罗夫第一次面对深蓝(Deep Blue)时的迷惘。
随着Claude-Code、o3、Gemini 2.5 Pro等模型的能力日益强大,他已经可以“凭感觉”构建完整应用程序,即使并不掌握所使用的编程语言。他只需掌握高层次的代码结构,并在关键节点上对模型加以引导。关键问题随之而来:若一个人从未亲自编写大量代码,是否也能掌握这种“高层次引导”能力?是否可以成为优秀的SWE(软件工程)管理者而无需亲历底层开发工作?当模型的能力接近甚至超过高级程序员时,是否每个人都会转型为“管理者”?
有观点认为,如果只追求“做事”而非“学习”,最终会陷入困境,无法迈向新的领域,因为LLMs的局限也将限制用户自身的发展。在当前的“vibe-coding”模式下,这位工程师认为,自己更像是模型的外壳,负责执行操作并保持任务连贯性。但若未来模型具备执行操作和长时推理能力,他会否被彻底取代?究竟是他在使用模型,还是模型在使用他?
他进一步通过几个历史类比展开了深层思考:
-
计算器:过去,人类花费大量时间进行手动计算。如今,这一过程在毫秒级即可完成。但与今天的情况不同,即便计算器出现,人们依旧强调必须掌握算术知识,因为它是学习更高阶数学的基础。若套用这一类比,意味着应该在大量手写代码之后再使用LLMs;否则,连最基础的操作也将丧失。
-
GPS导航:虽然已经极其可靠,他从未因不会自己导航而陷入困境。但导航不是一个基础性技能,不影响更高层次能力。而软件工程的复杂性远高于导航,这种完全依赖的情况可能并不适用。
-
打字与印刷:人们曾担心电脑普及会使人类写作能力退化。但事实证明,打字速度带来的效率远远超过了手写记忆的优势。
-
工业革命:大量人类体力劳动被自动化取代,但那些技能大多非基础性、非跨领域的。而这一次,AI所挑战的,是“智能”本身。
-
国际象棋:人类与AI的合作曾在短暂时期内优于纯AI,但很快就被后者超越。编程作为一个更开放的系统,也许会重演这一进程。我们正处于“半人马时代”,但合作期还能持续多久?
-
编程抽象的演进:从汇编语言到C再到Python,抽象层级的不断提升使得效率大增。虽然CS专业仍会学习汇编,但绝大多数工程师不再与之交互。这是一个明显的趋势:上升到更高的抽象层,是好事。
他总结道,过去成功实现“技能外包”的前提是,这些技能要么属于狭域任务(如导航),要么即使被自动化,人类仍具备手动完成的能力(如数学计算)。而“智能”则无法轻易被边界化。
他列出了对LLMs的支持与反对观点:
-
反对理由:
-
自身只是模型的“外包装”。
-
完全赌注于AI迅速进化,若未达预期将陷入停滞。
-
类似“龟兔赛跑”中的兔子,虽然暂时领先,但最终落败。
-
即使模型发展迅猛,最终仍将失去优势和护城河。
-
无法再进行“真正的创新”。
-
-
支持理由:
-
短期内产出可提升5倍以上。
-
在这个时代,“先行动者”优势显著。
-
如果这场竞赛本就短暂,宁愿做冲刺的兔子。
-
他也看到一种中间平衡方案——将模型用作“一对一导师”。参考“布鲁姆两西格玛效应”,利用AI解答问题、引导调试,而不是直接代做任务。这种做法可以兼顾学习与产出,也是教育者心目中的理想AI场景。他认为,未来理想的教育产品应具备完善的“学习支架”,类似人类教师那样拒绝不利于学习的请求,避免成为知识速食。
但问题在于,学习真正发生在“自己动手”的过程中。就像人类与LLMs的区别一样:一个能在潜意识中操作知识,另一个则只能在表面层次拼接token。同样,人类若未亲自运用知识,也无法真正内化。例如,在首次应用某数学定理时,需将其逐步拆解处理;而数学家能够将多条定理整合为概念单元,从而处理更复杂问题——这与“神奇数字7±2”理论吻合,说明学习的关键在于自己“经历过程”。
尽管如此,他也认为,即便是“AI作为导师”的最优情况,其速度仍可能赶不上当下的变化节奏。在这个快速演化的时代,即使“学习+产出”兼顾的做法也是一种妥协,未必值得。
最终,他回到一个更深层次的哲学问题:如何在产出速度与深度学习之间取得平衡?他决定采取一种策略:在模型胜任的小型项目中果断使用自动化和“vibe-coding”,而在大型项目中,则格外谨慎地理解每一行代码,避免抽象泄露。
他清醒地意识到,大脑中某些能力若不常用将会退化,因此必须主动决定哪些能力要保留,否则最终会“失去整个大脑”。他列出自己不愿放弃的能力:
-
独立思考能力:保留从第一性原理出发的推理与创新能力。
-
每天安排不依赖LLMs的写作时间。
-
与朋友进行深入讨论,接受观点挑战。
-
-
决策能力:对自身行为承担责任。
-
投入长期且有意义的项目中。
-
-
长期专注能力:不被打扰地读书,进行持续几月甚至几年的工作。
-
阅读大量书籍。
-
长期投入一个重大工程。
-
他所探讨的不仅是一种技术选择,更是一场关于人类学习本质、AI合作边界以及自我定位的深度思考。