1、背景
人工原生动物优化器(Artificial Protozoa Optimizer ,APO)由Xiaopeng Wang等人于2024年提出,发表在著名期刊Knowledge-Based Systems。其灵感来自自然界中的原生动物。
2、算法原理
(1)思想
APO 通过模拟原生动物的觅食、休眠和繁殖行为来模拟原生动物的生存机制。
(2)过程
觅食状态,考虑了内部和外部原生动物的因素。内部因素被认为是觅食因素原生动物的特性,而外部因素被考虑由于环境的影响,如物种碰撞和竞争行为。
异养模式在黑暗中,原生动物可以通过从周围环境中吸收有机物来获取营养。假设Xnew是附近一个食物丰富的地方,原生动物就会向那里移动。
休眠状态:在环境压力下,原生动物可能会采取休眠行为作为一种生存策略来忍受不利的条件。当原生动物处于休眠状态时,它会被新产生的原生动物所取代,以保持恒定的种群数量。
繁殖状态:在适当的年龄和健康状况下,原生动物进行无性繁殖,这被称为二元裂变。从理论上讲,这种繁殖会导致原生动物分裂成两个完全相同的子代。我们通过产生一个重复的原生动物并考虑扰动来模拟这种行为。
APO的数学模型中,所涉及的参数如下:
其中pf为原生动物种群中休眠和繁殖的比例分数,pah表示自养和异养行为的概率,pdr表示休眠和繁殖的概率。
作者用MathType编辑的公式、伪代码、visio的流程图,matlab代码,PDF论文,拿来直接用,可以帮助科研者省下超多时间。
有需要的友友们可以关注公众号:一个专业的算法研究员
关注公众号(一个专业的算法研究员)