从任一给定的正整数 n 出发,将其每一位数字相乘,记得到的乘积为 n1。以此类推,令 ni+1 为 ni 的各位数字的乘积,直到最后得到一个个位数 nm,则 m 就称为 n 的持续性。例如 679 的持续性就是 5,因为我们从 679 开始,得到 6×7×9=378,随后得到 3×7×8=168、1×6×8=48、4×8=32,最后得到 3×2=6,一共用了 5 步。
本题就请你编写程序,找出任一给定区间内持续性最长的整数。
输入格式:
输入在一行中给出两个正整数 a 和 b(1≤a≤b≤109 且 (b−a)<103),为给定区间的两个端点。
输出格式:
首先在第一行输出区间 [a,b] 内整数最长的持续性。随后在第二行中输出持续性最长的整数。如果这样的整数不唯一,则按照递增序输出,数字间以 1 个空格分隔,行首尾不得有多余空格。
输入样例:
500 700
输出样例:
5
679 688 697
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
const int N = 100010;
int a,b;
int q[N];
int main(void)
{
cin >> a >> b;
int mx=0,k=0;
// mx 记录最大的持续性
// k记录每个数字的持续性
for(int i=a;i<=b;i++)
{
int temp=i;
int idx=0;
while(temp>9)
{
int a=1;
while(temp>0)
{
int t = temp%10;
a = a*t;
temp/=10;
}
idx++;
temp = a;
}
mx = max(mx,idx);
q[k++] = idx;
}
cout << mx << endl;
int p=0;
for(int i=0;i<=b-a;i++)
{
// 对输出格式要求很严格
if(!p)
{
if(q[i]==mx)
{
cout << i+a;
p=1;
}
}
else if(q[i]==mx)
{
cout << ' ' << i+a;
}
}
return 0;
}