一、基础概念
1、深度优先搜索
深度优先搜索算法(Depth First Search,简称DFS):一种用于遍历或搜索树或图的算法。 沿着树的深度遍历树的节点,尽可能深的搜索树的分支。当节点v的所在边都己被探寻过或者在搜寻时结点不满足条件,搜索将回溯到发现节点v的那条边的起始节点。整个进程反复进行直到所有节点都被访问为止。属于盲目搜索,最糟糕的情况算法时间复杂度为O(!n)。
你可以把深度优先搜索想象成一个人在森林中探险。这个人从入口开始,选择一条路径一直走,直到走到这条路径的尽头。然后,他返回到上一个分叉点,选择另一条没有走过的路径继续探险,如此往复,直到他探索完所有可能的路径。
2、回溯
想象你在森林里迷路了,你开始尝试各种方向,希望能找到出路。每当你觉得某个方向不对,或者走到了死胡同,你就会返回原来的地方,选择另一个方向继续前行。这就是回溯。在算法中,回溯意味着在搜索的过程中,每当遇到不符合条件的情况或者达到问题的边界时,就返回上一级状态,并尝试其他可能性,直到找到解或确定无解为止。
3、剪枝
在森林里,有些方向你一看就知道是错的,比如朝着悬崖或者沼泽走。这时,你就不需要真的走过去再返回来,而是直接排除这些方向,选择其他更有希望的路。这就是剪枝。在算法中,剪枝是一种优化技术,通过提前判断某些选择不可能得到解,从而避免无效的搜索,减少计算量。
二、例题
46. 全排列
此题是一道典型的深度优先搜索题,通过此题我们将了解dfs的基本思想以及解题模版步骤
画出决策树
从以上决策树中不难看出,我们只需将这个树遍历完就可以得到所有全排列答案,决策树中的撤销操作就是回溯,而回溯完紧接着就需要剪枝
设计代码
1、创建全局变量:
int** ret; // 记录所有排列结果的二维数组
int* path; // 记录一种排列结果的一维数组
bool* check; // 标记数组元素是否被使用的一维数组
设计主函数:
int** permute(int* nums, int numsSize, int* returnSize, int** returnColumnSizes) {
// nums:需要排列的一维数组,numsSize:nums元素个数,returnSize:返回的二维数组的行数,returnColumnSizes:记录二维数组每行的列数的一维数组.*returnColumnSizes表示此数组的数组名
//初始化变量
*returnSize = 0;
*returnColumnSizes = (int*)malloc(sizeof(int) * INT_MAX);
ret = (int**)malloc(sizeof(int*) * INT_MAX);
path = (int*)malloc(sizeof(int) * numsSize);
check = (bool*)malloc(sizeof(bool) * numsSize);
for (int i = 0; i < numsSize; i++) {
check[i] = true;
}
// 开始深度优先搜索
dfs(nums, numsSize, returnSize, returnColumnSizes, 0); // 从深度 0 开始
// 释放中间使用的全局变量
free(path);
free(check);
return ret;
}
2、设计dfs函数
dfs本质上是一个递归函数,我们还是用三步法设计:
- 确定函数返回类型和参数:由于我们直接修改全局变量的方式来返回答案,所以dfs函数返回值为void,函数参数在主函数的四个参数上新增一个depth,记录path数组(当前这种排列)下标
- 确定递归出口:将每种排列结果都记录在path这个数组中,所以当path下标增至与numsSize相等时,代表所有数都已被排列,则结束递归。
- 确定函数体:首先遍历check数组,如果哪个数未被使用(true),则将其排列使用放到path中,随后在check将此数标记为已使用(false),然后递归将其他数继续放到path中
void dfs(int* nums, int numsSize, int* returnSize, int** returnColumnSizes, int depth) {
if (depth == numsSize) {
int* temp = (int*)malloc(sizeof(int) * numsSize);
for (int i = 0; i < numsSize; i++) {
temp[i] = path[i];
}
ret[*returnSize] = temp;
(*returnColumnSizes)[*returnSize] = numsSize;
(*returnSize)++;
return;
}
for (int i = 0; i < numsSize; i++) {
if (check[i]) {
path[depth] = nums[i]; // 将当前数字放入 path 的正确位置
check[i] = false;
dfs(nums, numsSize, returnSize, returnColumnSizes, depth + 1); // 递归调用,深度增加
check[i] = true; // 回溯,重置 check[i]
}
}
}
回溯与剪枝
先来看看dfs刚开始是怎么运行的:
在第一次dfs中将path第一个数赋为1
随后开始dfs2,1已被标记使用过,然后只能按顺序将2加入path数组
随后开始dfs3,1,、2已被标记,只能将3加入
最后dfs4进入递归边界直接返回到dfs3,开始回溯
在dfs3的for循环中,将3清除标记, i 已遍历完整个nums数组,直接结束for循环并返回到dfs2
dfs2中先将2清除标记,随后for循环继续进行,由于3已被清除标记,所以将3放入path中2的位置
随后进行dfs5将2放入path数组,以此类推,直到dfs6结束后,因为dfs2中 i 已遍历完整个nums数组,dfs2中for循环结束。所以dfs6结束后一口气直接回溯到的dfs1
随后dfs1中的for循环继续,将2放入path中1的位置以此类推,直至遍历完所有排列
关键点:
1、在dfs的for循环中,用 i 来遍历原本数组,用 depth 来记录当前排列数组下标,二者是分开不干扰的。所以for循环的本意为:遍历nums数组,将所有未使用的数依次赋给path中下标depth的位置,由此得到所有排列。所以不考虑递归,在同一次dfs中depth的值不变,每次进入for循环,只改变path中下标为depth的数,随后调用递归,改变下标depth+1的数。
2、剪枝中巧妙的一点:我们在dfs形参中直接传递的是depth+1常数值而不是指针,所以在递归中不改变depth的值,因此回溯时无需depth-1(depth的值与调用递归前一样,递归未改变depth的值)。
3、此题中对于剪枝的理解:每次在for循环中调用一次dfs时,由于不断递归深入,最终会得到将nums[i]放到path[depth]位置的所有排列结果,所以每次调用dfs后(depth位置是nums[i]这个数的所有排列都已得出),只需考虑将depth位置未放置过的数继续放到depth位置并求出其所有排列。所以将已排列过的nums[i]标记为false,随后继续for循环,继续将其他数放到depth位置求出其所有排列。
总代码
int** ret; // 记录所有排列结果的二维数组
int* path; // 记录一种排列结果的一维数组
bool* check; // 标记数组元素是否被使用的一维数组
void dfs(int* nums, int numsSize, int* returnSize, int** returnColumnSizes, int depth) {
if (depth == numsSize) {
int* temp = (int*)malloc(sizeof(int) * numsSize);
for (int i = 0; i < numsSize; i++) {
temp[i] = path[i];
}
ret[*returnSize] = temp;
(*returnColumnSizes)[*returnSize] = numsSize;
(*returnSize)++;
return;
}
for (int i = 0; i < numsSize; i++) {
if (check[i]) {
path[depth] = nums[i]; // 将当前数字放入 path 的正确位置
check[i] = false;
dfs(nums, numsSize, returnSize, returnColumnSizes, depth + 1); // 递归调用,深度增加
check[i] = true; // 回溯,重置 check[i]
}
}
}
int** permute(int* nums, int numsSize, int* returnSize, int** returnColumnSizes) {
// nums:需要排列的一维数组,numsSize:nums元素个数,returnSize:返回的二维数组的行数,returnColumnSizes:记录二维数组每行的列数的一维数组.*returnColumnSizes表示此数组的数组名
*returnSize = 0;
*returnColumnSizes = (int*)malloc(sizeof(int) * 1000);
ret = (int**)malloc(sizeof(int*) * 1000);
path = (int*)malloc(sizeof(int) * numsSize);
check = (bool*)malloc(sizeof(bool) * numsSize);
for (int i = 0; i < numsSize; i++) {
check[i] = true;
}
// 开始深度优先搜索
dfs(nums, numsSize, returnSize, returnColumnSizes, 0); // 从深度 0 开始
// 释放中间使用的全局变量
free(path);
free(check);
return ret;
}