一、有效数字规则和运算
科学计数法:科学计数法是一种用于表示极大或极小的数字的方法,其格式为将数字表示为一个介于1到10之间的数乘以10的幂。
e.g.
314000000 = 3.14*10^8
0.0141521=1.41521*10^-2
数字修约的规则:
1.四舍六入五凑偶规则: 当被修约数的后一位数字为5时,应根据5后面的数字来决定修约数的末位数字:如果5后面的数字大于0,则末位数字进位;如果5后面的数字为0,则应看5前面的数字:若为奇数,则末位数加1;若为偶数,则末位数不变。
e.g. 保留两位有效数字
①2.834 2.8
②3.193 3.2
③3.528 3.6
④3.154 3.2
⑤3.259 3.2
2.无条件进位: 当需要截取或修约的位数后面还有非零数字时,应将该位数字进位。
3.截断: 直接舍去不需要的位数,不进行四舍五入。
注:1、为较小误差,在实际计算过程中,可以暂时多保留一位有效数字
2、
不确定度:当第一位有效数字是1或2时,应保留2位有效数字。当第一位有效数字大于2时,保留1位有效数字即可,如果要求较高也可以保留2位有效数字。而中间过程的不确定度可以多取一位有效数字,要按照只进不舍的原则。
一般不确定度和相对不确定度都只保留一位,平均值末位和不确定度对齐即可
测量平均值的有效数字:要按照四舍六入五凑偶的规则,与不确定末位保持对齐即可。
有效数字计算方法:从第一位非零数字开始数到最后一位的位数,称为有效数字位数
注:
(1)有指针或刻度的仪器:最小刻度一下再估读一位
(2)数字显示仪表:显示值均为有效数字,不用估读
e.g.
①1.0850 1、0、8、5、0 5位有效数字
②0.0301 3、0、1 3位有效数字
③3.16*10^3 3、1、6 3位有效数字
有效数字运算规则:
①加法和减法规则:结果的小数点位数与被运算数中小数点位数最少的一个一致
e.g.
2.31 + 15.672 = 17.98
34.6 - 7.812 = 26.8
②乘法与除法规则:运算结果有效数字和运算数中有效数字最少的一个一致
e.g.
25.31/4.02= 6.30
7.2/14=0.5.
③乘方与开方规则:运算结果与底数有效位数相同
e.g.
2.34^3=12.8
根号56.93=7.545
④指数规则:运算结果有效位数和指数小数点后有效位数一致
e.g.
e^2.34=10
⑤对数规则:运算结果尾数和对数真数有效位数相同
log2(15.7)=3.973
⑥三角规则:有效数字和弧度有效数字相同
sin26°37‘=0.xxxx
二、误差和测量的不确定度
(绝对)误差:测量值-真实值
相对误差:绝对误差/真实值
分类:系统误差和偶然误差
系统误差:每次实验,误差大小和方向是相同的,具有恒定性,为了提高实验准确度,我们需要减小甚至消除系统误差,而修正措施由具体实验决定
偶然误差:每次实验,测量误差的大小和方向以不可以预知的方式变化,具有不确定性,但进行测量会发现偶然误差的分布满足小误差出现的次数多,大误差出现的次数少,正方向误差和方向误差出现的次数大致相同。偶然误差可以通过多次测量取平均值减少。
直接测量法:
测量结果的标准形式:
![]()
测量步骤:
1.修正已知的系统误差,得到测量值
2.求测量数据的算术平均值:
![]()
3.用贝塞尔公式计算标准偏差:
4.用标准偏差乘以置信参数得到不确定度的A类分类
通常物理实验中n=6,t_0.95=2.78,则t_0.95/根号n=1.05
所以不确定度A类分量=1.05倍标准偏差
5.查表得到仪器标定的最大允差,确定不确定度的B类分量
7.计算相对不确定度
8.得到测量结果
间接测量法:
已知N=F(x,y,z)
已知x、y的测量结果,则
![]()
三、origin进行实验作图
Step1:create a form
Step 2:draw a picture(add info、modify X/Y-Axis title and value range)