真空中的静电场
库仑定律
F
=
k
q
1
q
2
r
2
=
1
4
π
ϵ
0
q
1
q
2
r
2
F=\frac{kq_1q_2}{r^2}=\frac{1}{4\pi\epsilon_0}\frac{q_1q_2}{r^2}
F=r2kq1q2=4πϵ01r2q1q2
电场强度
E
⃗
=
F
⃗
q
0
\vec{E}=\frac{\vec{F}}{q_0}
E=q0F
点电荷的电场
E
⃗
=
1
4
π
ϵ
0
q
r
2
e
r
⃗
\vec{E}=\frac{1}{4\pi\epsilon_0}\frac{q}{r^2}\vec{e_{r}}
E=4πϵ01r2qer
点电荷系的电场:由电场叠加原理,
E
⃗
=
∑
E
i
⃗
\vec{E}=\sum{\vec{{E_{i}}}}
E=∑Ei,对于连续带电体,
E
⃗
=
∫
1
4
π
ϵ
0
d
q
r
3
r
⃗
\vec{E}=\int\frac{1}{4\pi\epsilon_0}\frac{dq}{r^3}\vec{{r}}
E=∫4πϵ01r3dqr
典型结论:
无限长带电线 E ( r ) = λ 2 π ϵ 0 r E(r)=\frac{\lambda}{2\pi\epsilon_0r} E(r)=2πϵ0rλ
半无限大带电线 E ( x ) = − λ 4 π ϵ 0 r , E ( y ) = λ 4 π ϵ 0 r E(x)=-\frac{\lambda}{4\pi\epsilon_0r},E(y)=\frac{\lambda}{4\pi\epsilon_0r} E(x)=−4πϵ0rλ,E(y)=4πϵ0rλ
均匀带电圆环 E ( x ) = 1 4 π ϵ 0 Q x ( x 2 + R 2 ) 3 / 2 E(x)=\frac{1}{4\pi\epsilon_0}\frac{Qx}{(x^2+R^2)^{3/2}} E(x)=4πϵ01(x2+R2)3/2Qx
无限大平面 E ( r ) = σ 2 ϵ 0 E(r)=\frac{\sigma}{2\epsilon_0} E(r)=2ϵ0σ
均匀带电球面 r < R , E ( r ) = 0 ; r > R , E ( r ) = Q 4 π ϵ 0 r 2 r<R,E(r)=0;r>R,E(r)=\frac{Q}{4\pi\epsilon_0r^2} r<R,E(r)=0;r>R,E(r)=4πϵ0r2Q
均匀带电球体 r < R , E ( r ) = ρ r 3 ϵ 0 ; r > R , E ( r ) = ρ R 3 3 ϵ 0 r 2 r<R,E(r)=\frac{\rho{r}}{3\epsilon_0};r>R,E(r)=\frac{\rho{R^3}}{3\epsilon_0r^2} r<R,E(r)=3ϵ0ρr;r>R,E(r)=3ϵ0r2ρR3
高斯定理:真空静电场中,通过任一闭合曲面的电通量,等于闭合曲面内包围的电量代数和除以
ϵ
0
⇒
静电场为有源场
\epsilon_0\Rightarrow{静电场为有源场}
ϵ0⇒静电场为有源场
∬
S
E
⋅
d
S
=
Q
in
ϵ
0
∬
S
E
⋅
d
S
=
1
ϵ
0
∭
V
ρ
d
V
\iint_{S} \mathbf{E} \cdot d\mathbf{S} = \frac{Q_{\text{in}}}{\epsilon_0} \\\iint_{S} \mathbf{E} \cdot d\mathbf{S} = \frac{1}{\epsilon_0} \iiint_{V} \rho \, dV
∬SE⋅dS=ϵ0Qin∬SE⋅dS=ϵ01∭VρdV
专题一:计算电场分布
方法一:利用微元思想,将带电体视作点电荷、带电线、带点面的集合,表示出dq,然后通过积分求解
方法二:高斯定理
使用条件:电场具有一定的对称性
步骤:作闭合高斯面,由高斯定理,计算出电场分布
方法三:已知电势分布,利用电场和电势的微分关系求解电场
静电场中静电力做功只与始末状态有关->安培环流定理(静电场为无旋场):
∮
L
E
⋅
d
l
=
0
\oint_{L} \mathbf{E} \cdot d\mathbf{l} = 0
∮LE⋅dl=0
静电力做功等于电势能改变量的负值,将电荷单位化,取电势零点(典型的有无穷远点、大地),得到电势定义:
V
a
,
b
=
W
q
=
∫
a
b
E
d
l
,
V
(
b
)
=
0
V_{a,b}=\frac{W}{q}=\int_a^b\mathbf{E}d\mathbf{l},V(b)=0
Va,b=qW=∫abEdl,V(b)=0
点电荷电势
V
=
1
4
π
ϵ
0
q
r
V=\frac{1}{4\pi\epsilon_0}\frac{q}{r}
V=4πϵ01rq
专题二:计算电势:
1、利用电势的定义,已知电场分布,选取电势零点,通过电场积分计算电势
2、已知电荷分布,利用电势叠加原理,电势积分计算总电势
典型结论:
均匀带电球面 r < R , V = Q 4 π ϵ 0 R ; r<R,V=\frac{Q}{4\pi\epsilon_0R}; r<R,V=4πϵ0RQ; r > R , V = Q 4 π ϵ 0 r ; r>R,V=\frac{Q}{4\pi\epsilon_0r}; r>R,V=4πϵ0rQ;
等势面:
①电势处处相等 ②沿等势面电场力不做功 ③电场沿法线方向 ④电场沿电势降低方向
电势与电场强度的微分关系:
通过构造两个等势面V,V+dV推导得到E与dv的关系
E
=
−
d
V
d
n
=
−
∇
V
E=-\frac{dV}{dn}=-\nabla{V}
E=−dndV=−∇V
理解角度一:电场强度大小等于沿等势面法线方向的电势变化率,分析沿电势降低方向
理解角度二:电势沿等势面法线方向变化率最大
在直角坐标系中, E x = − V x , E y = − V y , E z = − V z E_{x}=-V_{x},E_{y}=-V_{y},E_{z}=-V_{z} Ex=−Vx,Ey=−Vy,Ez=−Vz
在极坐标中, E r = − V r , E θ = − 1 r V θ E_{r}=-V_{r},E_{\theta}=-\frac{1}{r}V_{\theta} Er=−Vr,Eθ=−r1Vθ