下面内容摘录自《用R 探索医药数据科学》专栏文章的部分内容。
1)栏目后续章节的文章将深入概括R语言在临床研究和新药创新领域的应用,填补了国内R教材中尚未广泛覆盖的部分内容。
2)专栏每篇文章都在 5000 字以上,质量平均分高达 94 分。已发表章节也会增加新的文章,已发表的文章也会更新版本,可留意专栏内容和题目信息。
3)由于每结束一个章节,专栏的优惠力度就会减小,当下正是订阅的最佳优惠时段,诚邀各位积极订阅!看全文请点击下面链接
欢迎订阅我们专栏
.......前面部分请点击上面链接看原文(原文6068字)
3、标准差和方差
标准差(Standard Deviation, SD)是衡量数据离散程度的常用指标。标准差是数据偏离平均值的程度的度量,它是方差的平方根。标准差越大,表示数据点偏离平均值的程度越大,数据越分散。
方差(Variance)则是标准差的平方,用于表示数据的离散程度。它通过计算数据点与均值之间的偏差平方的平均值来度量数据的变异性。
在R语言中,我们可以使用sd()
函数计算标准差。
sd(birthwt$lwt)
结果为:
[1] 30.57938
使用var()
函数计算方差
var(birthwt$lwt)
结果为:
[1] 935.0985
在该示例中,母亲体重的标准差为30.58,方差为935.10。这意味着数据的离散程度相对较大,表明数据点围绕平均值的波动较大。
医学中的应用
在一项新药临床试验中,研究人员可以使用标准差来评估不同组别患者症状改善的稳定性与有效性。以下代码示例展示了如何在R中进行此类分析:
# 创建两组患者的症状改善数据
treatment_group <- c(5, 8, 12, 10, 15)
control_group <- c(3, 4, 5, 3, 6)
# 计算标准差
sd_treatment <- sd(treatment_group)
sd_control <- sd(control_group)
print(sd_treatment)
print(sd_control)
结果为:
> print(sd_treatment)
[1] 3.807887
> print(sd_control)
[1] 1.30384
从标准差计算结果来看,治疗组的标准差(3.807887)明显高于对照组(1.30384),揭示了两组之间的离散程度差异。治疗组的高标准差表明症状改善的效果在不同患者之间差异较大,可能说明治疗对不同患者的适应性存在差异;而对照组的低标准差则表明症状改善较为一致。进一步分析应关注治疗效果差异的原因,并使用统计检验验证差异的显著性。
经济学的应用
在经济学中,标准差常用于衡量投资风险。例如,股票收益的标准差越大,意味着其收益波动越大,投资风险也越高。以下R代码示例展示了如何使用标准差来分析不同股票的风险:
# 创建两个股票收益率数据集
stock_A <- c(0.05, 0.10, 0.15, -0.02, 0.07)
stock_B <- c(0.03, 0.05, 0.12, -0.01, 0.04)
# 计算标准差
sd_stock_A <- sd(stock_A)
sd_stock_B <- sd(stock_B)
print(sd_stock_A)
print(sd_stock_B)
通过比较两个股票的标准差,投资者可以选择风险与收益相匹配的投资组合。
........
欢迎订阅我们专栏,深度系统地学习R语言。
为帮助大家更出色地掌握临床统计、数据挖掘以及人工智能建模的入门知识和应用,由于众多同学在计算机编程上经验欠缺,特此开设《用R 探索医药数据科学》专栏。该专栏每周至少会定期更新三篇,直到整个专栏更新完成。每篇文章都在 5000 字以上,质量平均分高达 94 分。还要提醒大家的是,每结束一个章节,专栏的优惠力度就会减小,当下正是订阅的最佳优惠时段,诚邀各位积极订阅!
专栏《用R 探索医药数据科学》链接:https://blog.csdn.net/2301_79425796/category_12729892.html?spm=1001.2014.3001.5482