12章2节:构建一元和多元的线性回归模型

130 篇文章 17 订阅 ¥239.90 ¥399.90

这篇文章将详细介绍如何在R语言中构建线性回归模型,并以birthwt数据集作为实例进行分析。我们将通过对数据的预处理、构建单变量和多变量线性回归模型、对模型结果进行解释以及模型诊断的各个步骤,全面了解如何使用R语言进行回归分析。

一、认识线性回归模型

1、认识线性回归

线性回归是一种研究两个或多个临床变量之间关系的方法。在临床研究中,我们通常会想知道某些因素是如何影响患者健康状况的。比如,我们想了解“吸烟的年数”对“肺功能”的影响,就可以使用线性回归进行分析。

在这种分析中,我们把可能会影响结果的因素叫做“自变量”,而受到影响的健康状况或指标叫做“因变量”。通过线性回归分析,我们可以找到这些变量之间的关系,并用一个公式来表示它们之间的联系,以帮助我们进行预测和推断。

2、一元线性回归和多元线性回归

根据我们要研究的自变量的数量,线性回归可以分为“一元线性回归”和“多元线性回归”。如果只考虑一个自变量,也就是说只考虑一个因素对因变量的影响,这叫做“一元线性回归”。比如,考虑“吸烟的年数”对“肺功能

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DAT | 数据科学和人工智能兴趣组

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值