这篇文章将详细介绍如何在R语言中构建线性回归模型,并以
birthwt
数据集作为实例进行分析。我们将通过对数据的预处理、构建单变量和多变量线性回归模型、对模型结果进行解释以及模型诊断的各个步骤,全面了解如何使用R语言进行回归分析。
一、认识线性回归模型
1、认识线性回归
线性回归是一种研究两个或多个临床变量之间关系的方法。在临床研究中,我们通常会想知道某些因素是如何影响患者健康状况的。比如,我们想了解“吸烟的年数”对“肺功能”的影响,就可以使用线性回归进行分析。
在这种分析中,我们把可能会影响结果的因素叫做“自变量”,而受到影响的健康状况或指标叫做“因变量”。通过线性回归分析,我们可以找到这些变量之间的关系,并用一个公式来表示它们之间的联系,以帮助我们进行预测和推断。
2、一元线性回归和多元线性回归
根据我们要研究的自变量的数量,线性回归可以分为“一元线性回归”和“多元线性回归”。如果只考虑一个自变量,也就是说只考虑一个因素对因变量的影响,这叫做“一元线性回归”。比如,考虑“吸烟的年数”对“肺功能