在现代数据科学和人工智能的应用中,R语言因其强大的数据处理、统计分析和可视化能力,成为了学术研究和工业界的重要工具之一。随着大型语言模型(LLMs)在自然语言处理领域的广泛应用,将这些模型与R语言结合,能够为用户提供更高效、灵活的交互体验。DeepSeek 是一款新兴的生成式人工智能模型,其性能在多个领域与OpenAI的模型相媲美,且在成本和效率上具有明显优势。通过将 DeepSeek 的调用封装成 R 函数,用户可以方便地在 R 环境中与模型进行交互,实现自然语言的输入输出,并结合 R 的数据处理能力,进行更深入的分析和应用。本文继续介绍如何在 R 中调用 DeepSeek 模型,包括封装调用过程、设置模型角色、实现上下文记忆等功能,以提升多轮对话的连贯性和准确性。
一、将 DeepSeek 调用封装成 R 函数
在基础篇我们提到。
# 加载处理 HTTP 请求的包 httr
# 该包提供了方便快捷的函数来发送 GET、POST 等 HTTP 请求
library(httr)
# 加载处理 JSON 数据的包 jsonlite
# 该包用于将 R 对象转换成 JSON 格式,并解析 JSON 格式数据
library(jsonlite)
# 定义用于 API