【C++ 第十二章】二叉搜索树

1.1 二叉搜索树概念


二叉搜索树又称二叉排序树,它或者是一棵空树,或者是具有以下性质的二叉树:

  • 左边小:若它的左子树不为空,则左子树上所有节点的值都小于根节点的值
  • 右边大:若它的右子树不为空,则右子树上所有节点的值都大于根节点的值
  • 它的左右子树也分别为二叉搜索树

1.2 二叉搜索树操作

int a[] = {8, 3, 1, 10, 6, 4, 7, 14, 13};

0. 二叉搜索树节点的创建 与 基础框架的构建

节点类

template<class K>
struct BSTreeNode
{
	typedef BSTreeNode<K> Node;

	K _key;
	Node* _left;
	Node* _right;

	BSTreeNode(const K& val)
		:_key(val)
		,_left(nullptr)
		, _right(nullptr)
	{}
};

基础框架

template<class K>
class BSTree
{
	typedef BSTreeNode<K> Node;

public:


private:
	Node* _root = nullptr;
};

1. 二叉搜索树的查找  find


a、从根开始比较,查找,比根大则往右边走查找,比根小则往左边走查找。
b、最多查找高度次,走到到空,还没找到,这个值不存在。

// 1、查找
bool Find(const K& val) {
	if (_root == nullptr) {
		return false;
	}

	Node* cur = _root;
	while (cur) {
		if (cur->_key > val) {
			cur = cur->_left;
		}
		else if (cur->_key < val) {
			cur = cur->_right;
		}
		else return true;
	}

	return false;
}

 
2. 二叉搜索树的插入  insert


插入的具体过程如下:
a. 树为空,则直接新增节点,赋值给 root 指针
b. 树不空,按二叉搜索树性质查找插入位置,插入新节点

Node* Insert(const K& val) {
	// (1)先判断节点是否存在
	if (Find(val)) {
		cout << "结点已存在" << '\n';
		return _root;
	}
	// (2)如果根为空,则直接插入一个节点
	if (_root == nullptr) {
		_root = new Node(val);
		return _root;
	}

	// (3)按照二叉搜索树的性质,走到合适的位置
	Node* parent = nullptr;
	Node* cur = _root;
	while (cur) {
		if (cur->_key > val) {
			parent = cur;
			cur = cur->_left;
		}
		else if (cur->_key < val) {
			parent = cur;
			cur = cur->_right;
		}
	}

	// (4)插入节点:和父节点链接上
	cur = new Node(val);
	if (parent->_key > val) {
		parent->_left = cur;
	}
	else if (parent->_key < val) {
		parent->_right = cur;
	}

	return _root;
}

3. 二叉搜索树的删除

代码逻辑:

(1)先判断该节点是否存在:如果不存在,则返回

(2)按照搜索树的规则,找到目标节点位置

(3)分情况执行删除操作:

要删除的结点可能分下面四种情况

a. 要删除的结点无孩子结点:没有孩子

b. 要删除的结点只有左孩子结点:只有 左孩子

c. 要删除的结点只有右孩子结点:只有 右孩子

d. 要删除的结点有左、右孩子结点:有左右孩子

看起来有待删除节点有 4 种情况,实际情况 a 可以与情况 b 或者 c 合并起来

因此真正的删除过程 如下:

⭐有一个孩子 或 零个孩子:

  • 情况1:删除该节点,使该节点的 父亲 指向 该节点的左孩子
  • 情况2:删除该节点,使该节点的 父亲 指向 该节点的右孩子

⭐有两个孩子:

  • 情况 3:替换法(删掉一个节点,可以找一个继承人继承你当前的位置)

你当前的位置有个特征:左边节点一定比你小,右边节点一定比你大

因此,你找的继承人一定也要满足这个条件:即可以是 左子树的最大节点 或 右子树的最小节点

  • 左子树的最大节点:一定比左子树的根要大,一定比右子树的根要小
  • 右子树的最小节点:一定比左子树的根要大,一定比右子树的根要小

替换规则:

        直接将要删除的节点的键值key 替换成 继承人的键值key,然后删除继承人(因为继承人一定是叶子节点,可以直接删除,不用处理是否有孩子的问题)

替换法 使得删除节点变得简单,而便利

代码中有详细的 步骤解释了

// 3、删除
void Erase(const K& val) {
	// (1)先看节点是否存在
	if (!Find(val)) {
		cout << "结点不存在" << '\n';
		return;
	}

	// (2)按照搜索树的规则,找到目标节点位置
	Node* parent = nullptr;
	Node* cur = _root;
	while (cur) {
		if (cur->_key > val) {
			parent = cur;
			cur = cur->_left;
		}
		else if (cur->_key < val) {
			parent = cur;
			cur = cur->_right;
		}
		else break;
	}

	// (3)分情况执行删除操作:
	// 0~1个孩子:删除该节点后,让父节点指向我的孩子
	if (cur->_right == nullptr) {

		// 特殊情况:当父亲为空时,证明当前要删除的节点是根,直接删除,让根指针指向孩子
		if (parent == nullptr) {
			_root = cur->_left;
		}
		else {
			if (parent->_key > cur->_key) {
				parent->_left = cur->_left;
			}
			else if (parent->_key < cur->_key) {
				parent->_right = cur->_left;
			}
		}
		delete cur;
	}
	else if (cur->_left == nullptr) {
		if (parent == nullptr) {
			_root = cur->_right;
		}
		else {
			if (parent->_key > cur->_key) {
				parent->_left = cur->_right;
			}
			else if (parent->_key < cur->_key) {
				parent->_right = cur->_right;
			}
		}
		delete cur;
	}


	// 2 个孩子 及以上:替换法
	// 我们这里继承人是 :右子树的最左节点
	else {
		// 删除 右子树的最左节点
		Node* MinR_parent = cur;  // 右子树的最左节点的 父节点:这里一定要赋值为 cur,不能赋值为 nullptr
		Node* MinRight = cur->_right; // 右子树的根

		while (MinRight->_left) {
			MinR_parent = MinRight;
			MinRight = MinRight->_left;
		}

		// 继承 cur 的位置
		cur->_key = MinRight->_key;


		// 删掉继承人,同时父节点接管 cur 的右孩子(为什么一定是右孩子:因为我们本代码要删除 右子树的最左节点,因此你就是最左的节点了,不可能还存在左节点)
		// 这里的问题是:Min 不知道是 MinParent的 左孩子 or 右孩子
		if (MinR_parent->_right == MinRight) {
			MinR_parent->_right = MinRight->_right;  // 可以是 空,也可以是一个节点
		}

		else MinR_parent->_left = MinRight->_right;  // 可以是 空,也可以是一个节点
		delete MinRight;
	}
}

4. 二叉树的中序遍历(便于观察结果)

void _InorderSearch(Node* root) {
	if (root == nullptr) {
		return;
	}
	_InorderSearch(root->_left);
	cout << root->_key << ' ';
	_InorderSearch(root->_right);
}

1.3 总代码 BinarySearchTree.h

#pragma once
#include<iostream>
#include<assert.h>
using namespace std;


template<class K>
struct BSTreeNode
{
	typedef BSTreeNode<K> Node;

	K _key;
	Node* _left;
	Node* _right;

	BSTreeNode(const K& val)
		:_key(val)
		,_left(nullptr)
		, _right(nullptr)
	{}
};

template<class K>
class BSTree
{
	typedef BSTreeNode<K> Node;

public:
	// 1、查找
	bool Find(const K& val) {
		if (_root == nullptr) {
			return false;
		}

		Node* cur = _root;
		while (cur) {
			if (cur->_key > val) {
				cur = cur->_left;
			}
			else if (cur->_key < val) {
				cur = cur->_right;
			}
			else return true;
		}

		return false;
	}
	// 2、插入
	Node* Insert(const K& val) {
		// (1)先判断节点是否存在
		if (Find(val)) {
			cout << "结点已存在" << '\n';
			return _root;
		}
		// (2)如果根为空,则直接插入一个节点
		if (_root == nullptr) {
			_root = new Node(val);
			return _root;
		}

		// (3)按照二叉搜索树的性质,走到合适的位置
		Node* parent = nullptr;
		Node* cur = _root;
		while (cur) {
			if (cur->_key > val) {
				parent = cur;
				cur = cur->_left;
			}
			else if (cur->_key < val) {
				parent = cur;
				cur = cur->_right;
			}
		}

		// (4)插入节点:和父节点链接上
		cur = new Node(val);
		if (parent->_key > val) {
			parent->_left = cur;
		}
		else if (parent->_key < val) {
			parent->_right = cur;
		}

		return _root;
	}
	// 3、中序遍历:直接就是排序了


	void InorderSearch() {
		_InorderSearch(_root);
		cout << '\n';
	}
	// 4、删除
	void Erase(const K& val) {
		// (1)先看节点是否存在
		if (!Find(val)) {
			cout << "结点不存在" << '\n';
			return;
		}
		
		// (2)按照搜索树的规则,找到目标节点位置
		Node* parent = nullptr;
		Node* cur = _root;
		while (cur) {
			if (cur->_key > val) {
				parent = cur;
				cur = cur->_left;
			}
			else if (cur->_key < val) {
				parent = cur;
				cur = cur->_right;
			}
			else break;
		}

		// (3)分情况执行删除操作:
		// 0~1个孩子:删除该节点后,让父节点指向我的孩子
		if (cur->_right == nullptr) {

			// 特殊情况:当父亲为空时,证明当前要删除的节点是根,直接删除,让根指针指向孩子
			if (parent == nullptr) {
				_root = cur->_left;
			}
			else {
				if (parent->_key > cur->_key) {
					parent->_left = cur->_left;
				}
				else if (parent->_key < cur->_key) {
					parent->_right = cur->_left;
				}
			}
			delete cur;
		}
		else if (cur->_left == nullptr) {
			if (parent == nullptr) {
				_root = cur->_right;
			}
			else {
				if (parent->_key > cur->_key) {
					parent->_left = cur->_right;
				}
				else if (parent->_key < cur->_key) {
					parent->_right = cur->_right;
				}
			}
			delete cur;
		}


		// 2 个孩子 及以上:替换法
		// 我们这里继承人是 :右子树的最左节点
		else {
			// 删除 右子树的最左节点
			Node* MinR_parent = cur;  // 右子树的最左节点的 父节点:这里一定要赋值为 cur,不能赋值为 nullptr
			Node* MinRight = cur->_right; // 右子树的根

			while (MinRight->_left) {
				MinR_parent = MinRight;
				MinRight = MinRight->_left;
			}

			// 继承 cur 的位置
			cur->_key = MinRight->_key;

			
			// 删掉继承人,同时父节点接管 cur 的右孩子(为什么一定是右孩子:因为我们本代码要删除 右子树的最左节点,因此你就是最左的节点了,不可能还存在左节点)
			// 这里的问题是:Min 不知道是 MinParent的 左孩子 or 右孩子
			if (MinR_parent->_right == MinRight) {
				MinR_parent->_right = MinRight->_right;  // 可以是 空,也可以是一个节点
			}

			else MinR_parent->_left = MinRight->_right;  // 可以是 空,也可以是一个节点
			delete MinRight;
		}
	}

private:
	// 将该函数直接写成 私有
	void _InorderSearch(Node* root) {
		if (root == nullptr) {
			return;
		}
		_InorderSearch(root->_left);
		cout << root->_key << ' ';
		_InorderSearch(root->_right);
	}

	Node* _root = nullptr;
};

 

1.4 二叉搜索树的应用(Key/Value 模型的 代码)

1.4.1  两种模型

(1)K模型:K模型即只有 key 作为关键码,结构中只需要存储 Key 即可,关键码即为需要搜索到的值。

key :在不在的场景

如门禁系统:人脸识别一对一

如检查当前写的文字中有没有错误单词:通过录入正确的词典,在词典中搜索对应的单词,若找不到,则说明该单词拼写错误

(2)KV模型:每一个关键码 key,都有与之对应的值Value,即的键值对。该种方式在现实生活中非常常见:

key / value:通过一个值找另一个值

如 字典

如 车库收费系统:按时收费

车辆驶入时,机器扫描 车牌作为 key,value 存为 进入时间

当你出门时,再次扫描车牌,匹配 key,通过当前时间和 value 的时间差,计算收费价格

1.4.2 <key, value> 模型的 代码

将节点改成 pair<key, value> 类型,即键值对模型

节点类模板

template<class K, class V>
struct BSTreeNode
{
	typedef BSTreeNode<K, V> Node;

	pair<K, V> _kv;
	Node* _left;
	Node* _right;

	BSTreeNode(const pair<K, V>& kv)
		:_kv(kv)
		, _left(nullptr)
		, _right(nullptr)
	{}
};

二叉搜索树类模板

template<class K, class V>
class BSTree
{
	typedef BSTreeNode<K, V> Node;

public:
	// 1、查找
	bool Find(const K& val) {
		if (_root == nullptr) {
			return false;
		}

		Node* cur = _root;
		while (cur) {
			if (cur->_kv.first > val) {
				cur = cur->_left;
			}
			else if (cur->_kv.first < val) {
				cur = cur->_right;
			}
			else return true;
		}

		return false;
	}
	// 2、插入
	Node* Insert(const pair<K, V>& data) {
		// (1)先判断节点是否存在
		if (Find(data.first)) {
			cout << "结点已存在" << '\n';
			return _root;
		}

		// (2)如果根为空,则直接插入一个节点
		if (_root == nullptr) {
			_root = new Node(data);
			return _root;
		}

		// (3)按照二叉搜索树的性质,走到合适的位置
		Node* parent = nullptr;
		Node* cur = _root;
		while (cur) {
			if (cur->_kv.first > data.first) {
				parent = cur;
				cur = cur->_left;
			}
			else if (cur->_kv.first < data.first) {
				parent = cur;
				cur = cur->_right;
			}
		}

		// (4)插入节点:和父节点链接上
		cur = new Node(data);
		if (parent->_kv.first > data.first) {
			parent->_left = cur;
		}
		else if (parent->_kv.first < data.first) {
			parent->_right = cur;
		}

		return _root;
	}
	// 3、中序遍历:直接就是排序了


	void InorderSearch() {
		_InorderSearch(_root);
		cout << '\n';
	}

	// 4、删除
	void Erase(const K& val) {
		// (1)先看节点是否存在
		if (!Find(val)) {
			cout << "结点不存在" << '\n';
			return;
		}

		// (2)按照搜索树的规则,找到目标节点位置
		Node* parent = nullptr;
		Node* cur = _root;
		while (cur) {
			if (cur->_kv.first > data.first) {
				parent = cur;
				cur = cur->_left;
			}
			else if (cur->_kv.first < data.first) {
				parent = cur;
				cur = cur->_right;
			}
			else break;
		}

		// (3)分情况执行删除操作:
		// 0~1个孩子:删除该节点后,让父节点指向我的孩子
		if (cur->_right == nullptr) {

			// 特殊情况:当父亲为空时,证明当前要删除的节点是根,直接删除,让根指针指向孩子
			if (parent == nullptr) {
				_root = cur->_left;
			}
			else {
				if (parent->_key > cur->_key) {
					parent->_left = cur->_left;
				}
				else if (parent->_key < cur->_key) {
					parent->_right = cur->_left;
				}
			}
			delete cur;
		}
		else if (cur->_left == nullptr) {
			if (parent == nullptr) {
				_root = cur->_right;
			}
			else {
				if (parent->_kv.first > data.first) {
					parent->_left = cur->_right;
				}
				else if (parent->_kv.first < data.first) {
					parent->_right = cur->_right;
				}
			}
			delete cur;
		}


		// 2 个孩子 及以上:替换法
		// 我们这里继承人是 :右子树的最左节点
		else {
			// 删除 右子树的最左节点
			Node* MinR_parent = cur;  // 右子树的最左节点的 父节点:这里一定要赋值为 cur,不能赋值为 nullptr
			Node* MinRight = cur->_right; // 右子树的根

			while (MinRight->_left) {
				MinR_parent = MinRight;
				MinRight = MinRight->_left;
			}

			// 继承 cur 的位置
			cur->_kv.first = MinRight.first;

			// 删掉继承人,同时父节点接管 cur 的右孩子(为什么一定是右孩子:因为我们本代码要删除 右子树的最左节点,因此你就是最左的节点了,不可能还存在左节点)
			// 这里的问题是:Min 不知道是 MinParent的 左孩子 or 右孩子
			if (MinR_parent->_right == MinRight) {
				MinR_parent->_right = MinRight->_right;  // 可以是 空,也可以是一个节点
			}

			else MinR_parent->_left = MinRight->_right;  // 可以是 空,也可以是一个节点
			delete MinRight;
		}
	}

private:
	// 将该函数直接写成 私有
	void _InorderSearch(Node* root) {
		if (root == nullptr) {
			return;
		}
		_InorderSearch(root->_left);
		cout << root->_kv.first << " : " <<  root->_kv.second << '\n';
		_InorderSearch(root->_right);
	}

	Node* _root = nullptr;
};

使用测试代码:

void TestKV() {
	vector<pair<string, string>>v = { {"string", "字符串"}, {"apple", "苹果"}, {"banana", "香蕉"} };
	my::BSTree<string, string> tree;
	for (auto e : v) {
		tree.Insert(e);
	}
	tree.InorderSearch();
}

 

1.5 二叉搜索树的性能分析

插入和删除操作都必须先查找,查找效率代表了二叉搜索树中各个操作的性能。

对有n个结点的二叉搜索树,若每个元素查找的概率相等,则二叉搜索树平均查找长度是结点在二 叉搜索树的深度的函数,即结点越深,则比较次数越多。

但对于同一个关键码集合,如果各关键码插入的次序不同,可能得到不同结构的二叉搜索树:

一种是较为 平衡的结构,一种是退化成链表的结构

最优情况下,二叉搜索树为完全二叉树(或者接近完全二叉树),其平均比较次数为:O(logn)

最差情况下,二叉搜索树退化为单支树(或者类似单支),其平均比较次数为:O(n)

问题:如果退化成单支树(像一条链表一样),二叉搜索树的性能就失去了。那能否进行改进,不论按照什么次序插入关键码,二叉搜索树的性能都能达到最优?(即树的节点分布比较平衡)那么我们后续章节学习的 AVL树 和 红黑树 就可以上场了。

AVL树、红黑树 都是 平衡二叉树,使得 节点的分布平衡,使 搜索性能达到 O(logn)


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值