大语言模型入门(三)——提示词编写注意事项

一、提示词编写原则

        提示词的编写应当遵循两个原则, 一个是指令必须清晰且具体,另一个是应当给模型充足的时间去思考。首先,你的指令足够清晰和具体,才能让大模型明确你需要它执行的任务,从而降低我们得到无关或者不正确响应的可能性。清晰的指令意味着提示词的篇幅要足够长(长到可以清晰表达你的需求),对于一些复杂的任务,提示词的长度可以达到几百甚至上千个字符。其次,对于一些需要较多思考过程的任务,应该给模型时间去思考,就像我们做一个旅游计划,首先应该确定日期、其次确定目的地、再次交通方式等等,需要一步一步来。对于大模型,我们也可以提示它一步一步思考,并且给出每一步的推导过程,这样才能获得更为有效的响应。

二、优质提示词的关键要素

        提示词的编写看似简单,但为了让模型的输出符合预期,有一些关键要素必须要注意。尤其是应用到业务中的时候,相信谁也不希望大模型的回答捉摸不透。开始接触大模型提示的时候,笔者以为就是一个语文问题,等到了解得更深入了,才知道这当中的学问可不少。以下是几个常见的注意事项。

1、灵活使用分隔符

        分隔符的使用主要在两方面:一方面是告诉大模型哪部分是我们给他的指令,哪部分是它需要识别的内容,比如下面的图片中笔者告诉大模型它需要识别的是三个双引号包围的内容(可以是任何我们定义的标点符号),其余的就是我给它的指令;另一方面是告诉模型的输出需要注意的地方,比如下图我们让模型识别城市实体,对每一个识别出来的实体直接用“#”包围,这样方便我们后续观看和处理。

生成一个大语言模型驱动的AI问答系统的代码,涉及到多个技术和工具的应用。下面是一个简化版本的设计思路和示例代码框架,帮助您入门构建这样的系统。 --- ### 1. **环境依赖与工具链** 我们需要安装一些必要的Python库来支持该系统的运行: ```bash pip install transformers torch flask ``` 这里我们用到了`transformers`(来自HuggingFace的大语言模型库)、`torch`作为其计算后端以及`flask`用于创建简单的Web API服务前端。 --- ### 2. **基础代码实现** 下面是这个简易版AI问答系统的主要部分: #### (1)加载预训练模型 首先需要选择合适大小的语言模型,并将其实例化: ```python from transformers import pipeline # 初始化问答pipeline qa_pipeline = pipeline("question-answering", model="distilbert-base-cased-distilled-squad") ``` 在这个例子中选择了相对较小但是足够强大处理大多数常见问题的回答任务的小型BERT变体——DistilBERT。 #### (2)编写API接口函数 接下来设置好我们的Flask app及其路由规则使得外部能够访问到内部的功能: ```python from flask import Flask, request, jsonify app = Flask(__name__) @app.route('/answer', methods=['POST']) def answer(): data = request.get_json() if 'context' not in data or 'question' not in data: return {"error": "Missing parameters"}, 400 result = qa_pipeline({ 'context': data['context'], 'question': data['question'] }) response_data = { 'score': result['score'], 'start_index': result['start'], 'end_index': result['end'], 'answer': result['answer'] } return jsonify(response_data), 200 ``` 以上片段定义了一个HTTP POST endpoint `/answer`, 它接收JSON格式请求体,其中包含上下文信息(context) 和具体询问(question). 根据这两个元素调用先前初始化好的QA管道获得结果返回给客户端. #### (3)启动服务器进程 最后,在脚本结尾添加一行让应用程序监听指定地址端口等待连接进来: ```python if __name__ == '__main__': app.run(host='0.0.0.0', port=5000) ``` 现在只要运行这份文件就可以激活基于网络的服务啦! --- ### 3. **注意事项** 尽管上面提供的只是一个非常初步的概念证明演示程序而已,但在真实世界部署前仍有许多地方值得进一步探讨和完善 : - 模型性能优化(如量化压缩技术减少内存占用). - 并发控制防止高负载情形下的崩溃风险. - 更加友好的图形界面提升用户体验等等... 希望上述内容能给您带来一定启发~
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值