解密(cspj2022)

题目描述
给定一个正整数 k,有 k 次询问,每次给定三个正整数 ni,ei,di,求两个正整数 pi,qi,使 ni=pi×qi、ei×di=(pi−1)(qi−1)+1。

输入格式
第一行一个正整数 k,表示有 k 次询问。

接下来 k 行,第 i 行三个正整数 ni,di,ei。

输出格式
输出 k 行,每行两个正整数 pi,qi 表示答案。

为使输出统一,你应当保证 pi≤qi。

如果无解,请输出 NO。

样例 #1
样例输入 #1
10
770 77 5
633 1 211
545 1 499
683 3 227
858 3 257
723 37 13
572 26 11
867 17 17
829 3 263
528 4 109
样例输出 #1
2 385
NO
NO
NO
11 78
3 241
2 286
NO
NO
6 88
【数据范围】

以下记 m=n−e×d+2。

保证对于 100% 的数据,1≤k≤105,对于任意的 1≤i≤k,1≤ni≤1018,1≤ei×di≤1018 ,1≤m≤109。

测试点编号    k≤    n≤    m≤    特殊性质
1    103    103    103    保证有解
2    103    103    103    无
3    103    109    6×104    保证有解
4    103    109    6×104    无
5    103    109    109    保证有解
6    103    109    109    无
7    105    1018    109    保证若有解则 p=q
8    105    1018    109    保证有解
9    105    1018    109    无
10    105    1018    109    无

#include<bits/stdc++.h>
#define ll unsigned long long
using namespace std;
ll k, n, d, e, m, l, r; //m=p+q
bool pan;
int main() {
	scanf("%lld", &k);
	for (ll i = 1; i <= k; i++) {
		pan = 0;
		scanf("%lld%lld%lld", &n, &d, &e);
		m = n - e * d + 2;
		l = 1;
		r = m  / 2 + 1;
		for (ll j = (l + r) / 2; l < r; j = (l + r) / 2) {
			if (j * (m - j) > n) {
				r = j;
			} else l = j + 1;
			if (j * (m - j) == n) {
				pan = 1;
				printf("%lld %lld\n", j, m - j);
				break;
			}
		}
		if (pan == 0) printf("NO\n");
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值