题目描述
给定一个正整数 k,有 k 次询问,每次给定三个正整数 ni,ei,di,求两个正整数 pi,qi,使 ni=pi×qi、ei×di=(pi−1)(qi−1)+1。
输入格式
第一行一个正整数 k,表示有 k 次询问。
接下来 k 行,第 i 行三个正整数 ni,di,ei。
输出格式
输出 k 行,每行两个正整数 pi,qi 表示答案。
为使输出统一,你应当保证 pi≤qi。
如果无解,请输出 NO。
样例 #1
样例输入 #1
10
770 77 5
633 1 211
545 1 499
683 3 227
858 3 257
723 37 13
572 26 11
867 17 17
829 3 263
528 4 109
样例输出 #1
2 385
NO
NO
NO
11 78
3 241
2 286
NO
NO
6 88
【数据范围】
以下记 m=n−e×d+2。
保证对于 100% 的数据,1≤k≤105,对于任意的 1≤i≤k,1≤ni≤1018,1≤ei×di≤1018 ,1≤m≤109。
测试点编号 k≤ n≤ m≤ 特殊性质
1 103 103 103 保证有解
2 103 103 103 无
3 103 109 6×104 保证有解
4 103 109 6×104 无
5 103 109 109 保证有解
6 103 109 109 无
7 105 1018 109 保证若有解则 p=q
8 105 1018 109 保证有解
9 105 1018 109 无
10 105 1018 109 无
#include<bits/stdc++.h>
#define ll unsigned long long
using namespace std;
ll k, n, d, e, m, l, r; //m=p+q
bool pan;
int main() {
scanf("%lld", &k);
for (ll i = 1; i <= k; i++) {
pan = 0;
scanf("%lld%lld%lld", &n, &d, &e);
m = n - e * d + 2;
l = 1;
r = m / 2 + 1;
for (ll j = (l + r) / 2; l < r; j = (l + r) / 2) {
if (j * (m - j) > n) {
r = j;
} else l = j + 1;
if (j * (m - j) == n) {
pan = 1;
printf("%lld %lld\n", j, m - j);
break;
}
}
if (pan == 0) printf("NO\n");
}
return 0;
}