毕业设计:基于信息安全的恶意流量检测系统

目录

前言

设计思路

一、课题背景与意义

二、算法理论原理

2.1 流量特征提取

2.2 集成学习算法

三、检测的实现

3.1 数据集

3.2 实验环境搭建

3.3 实验及结果分析

最后


前言

       📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。

        🚀对毕设有任何疑问都可以问学长哦!

         选题指导:

        最新最全计算机专业毕设选题精选推荐汇总

        大家好,这里是海浪学长毕设专题,本次分享的课题是

        🎯基于信息安全的恶意流量检测系统 

设计思路

一、课题背景与意义

         在信息技术迅猛发展的当下,网络安全问题日益突出,恶意流量攻击对信息系统造成的威胁日益严重。基于信息安全的恶意流量检测系统,能够有效地识别和阻断恶意流量,保护信息系统安全,具有重要的现实意义和深远的社会影响。该课题的研究,对于提高我国网络安全防护能力,保障国家和个人信息安全,具有重要的理论和实践价值。

二、算法理论原理

2.1 流量特征提取

        加密流量分类的关键任务是确定分类任务和识别粒度,选择适当的预处理方法,提取特征,选择合适的模型进行特征处理,从而得到分类结果。典型的分类任务包括加密与未加密、协议识别、应用识别、服务识别、网页分类、异常流量识别和内容参数识别。本文主要研究恶意加密流量,即异常流量。在加密恶意流量检测中,特征提取是最重要的环节。好的特征选择可以帮助研究人员节省大量时间,并有助于解释其实现方法和工作原理。流量特征主要分为内容特征、统计特征和序列特征。内容特征是最可靠的特征,包括恶意流量协议的独特值和有效载荷中的特殊字符和序列。统计特征基于统计提取,包括流持续时间、包数量、包长度分布和字节分布等。序列特征是当前研究的热点,可以使用马尔可夫矩阵、深度学习算法或频域特征来表示序列信息。

毕业设计:基于信息安全的恶意流量检测系统

2.2 集成学习算法

        集成学习方法是通过结合多个基模型进行预测,以提高单个模型的泛化性和鲁棒性。其中,bagging方法独立构建多个基模型,并对它们的预测进行平均,从而降低预测的方差;boosting方法按顺序构建基模型,并试图减少组合的偏差,以产生一个强大的集成模型。随机森林是bagging方法的一种扩展,由许多独立的决策树组成,利用bootstrap和特征随机性创建多个决策树,从而降低过拟合、偏差和总体方差的风险,得到更精确的预测。在回归任务中,通过取平均来获得最终预测结果;在分类任务中,通过多数投票来确定预测的类别。最后,使用包外样本进行交叉验证以完成预测。

毕业设计:基于信息安全的恶意流量检测系统

        XGBoost是一种梯度提升树算法,通过迭代训练决策树来优化模型的性能。它采用梯度提升算法,通过最小化损失函数的负梯度来逐步减小残差,从而提升模型的准确性。XGBoost具有正则化、自定义损失函数、特征重要性评估、并行化处理和缺失值处理等特点,使其在各种机器学习任务中表现出色。

毕业设计:基于信息安全的恶意流量检测系统

三、检测的实现

3.1 数据集

         由于现有的公开数据集难以满足本研究的需要,我们决定通过网络爬取的方式收集大量的恶意流量数据,并制作了一个全新的、专门针对恶意流量检测的数据集。这个数据集包含了各种网络攻击场景的流量数据,包括钓鱼攻击、木马攻击、拒绝服务攻击等。通过这种自制的数据集,我们能够更准确、更有效地训练模型,提高系统的检测准确性。

3.2 实验环境搭建

 毕业设计:基于信息安全的恶意流量检测系统 

3.3 实验及结果分析

        基于主机级的特征工程证书特征的分析方法可以通过统计证书中的字符串频次来判断软件是否是恶意软件。通过分析训练集中恶意和正常证书的可打印字符串出现次数,可以发现黑白样本之间存在明显区别,并且特定域名的访问频率在判断中起到重要作用。在分类器中,良性域名的频率高于恶意域名,因此对判定为正常样本提供更多证据。该方法提供了一种有效的手段来辨别恶意软件。

        被恶意软件感染的主机和服务器之间的控制消息的长度通常是相似且频繁的,具有很好的区分度。为了提取这些特征,需要计算不同长度的数据包的数量,并进行归一化以确保概率分布。可以将包长度划分为多个bin进行统计,但bin过小容易过拟合,bin过大则会造成信息损失。通过比较不同bin大小与得分的情况,选择了最佳分类效果的bin大小为1,即完全统计每个包长度出现的次数。

        对于稠密特征矩阵,像XGBoost这样的boosting算法通常能够发现更多有效的分类规则,而统计特征和序列特征属于稠密特征。对于稀疏特征,像RandomForest这样的bagging算法已经足够处理,其优点是训练速度快且超参数较少。而证书特征和包长分布属于稀疏特征。为了解决特征维度高导致训练时间代价高的问题,选择了将不同特征匹配到相应的分类器中,并采用软投票的方式得到最终结果,以提高分类得分。具体的分类流程如下:

  •  将特定主机IP的PCAP文件按流进行划分,并利用zeek生成JSON日志,再将其转换为CSV文件。然后,分别提取构造6组特征矩阵。
  • 对于流级的序列特征和统计特征,使用XGBoost算法处理,得到每个流的判黑概率。取所有流中判黑概率最大的作为该特征的主机判黑概率。对于主机级的统计特征和序列特征,同样使用XGBoost算法处理,得到每个主机的判黑概率。对于主机级的证书特征和包长分布特征,使用RandomForest算法处理,得到每个主机的判黑概率。
  • 通过6个分类器得到了6个对该主机的判黑概率。然后使用软投票(平均加权)的方式对判黑概率取平均值,作为最终的判黑概率。如果该主机的判黑概率大于设定的阈值,则标记为黑;否则标记为白。 

        F1-Score作为模型评估指标具有高稳健性和综合考虑精确度与召回率的优点。它适用于不平衡分类问题,能够提供全面、客观的评估结果,帮助评估模型在找到正例和准确分类的能力。

相关代码示例:

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
import xgboost as xgb

# 加载数据
data = pd.read_csv('encrypted_traffic.csv')

# 划分特征和标签
X = data.drop('label', axis=1)
y = data['label']

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 使用XGBoost处理序列特征和统计特征(流级)
xgb_model = xgb.XGBClassifier()
xgb_model.fit(X_train[['sequence_feature', 'statistical_feature']], y_train)
xgb_pred = xgb_model.predict_proba(X_test[['sequence_feature', 'statistical_feature']])[:, 1]

# 使用RandomForest处理证书特征和包长分布特征(主机级)
rf_model = RandomForestClassifier()
rf_model.fit(X_train[['certificate_feature', 'packet_length_distribution']], y_train)
rf_pred = rf_model.predict_proba(X_test[['certificate_feature', 'packet_length_distribution']])[:, 1]

# 软投票得到最终结果
final_pred = (xgb_pred + rf_pred) / 2

# 设置阈值,标记为黑或白
threshold = 0.5
final_pred_labels = ['black' if pred >= threshold else 'white' for pred in final_pred]

# 模型评估
from sklearn.metrics import classification_report
print(classification_report(y_test, final_pred_labels))

实现效果图样例:

创作不易,欢迎点赞、关注、收藏。

毕设帮助,疑难解答,欢迎打扰!

最后

  • 17
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
恶意流量检测系统是一种基于Python编程语言开发的系统,用于检测和识别网络通信中的恶意流量。 首先,该系统利用Python的网络编程库(例如Scapy)来捕获网络数据包。它可以监听网络接口,拦截传入和传出的数据包,并提取其中的关键信息。 其次,通过使用Python的机器学习库(例如Scikit-learn),该系统可以训练一个恶意流量的分类器。通过提供经过标记的数据包,该分类器能够学习和识别恶意流量的特征。常见的特征可以包括网络流量的来源、目标地址、端口号、协议类型等等。系统可以通过监控已知的恶意流量数据集,并将其与正常流量进行对比,从而识别潜在的恶意行为。 此外,该系统还可以利用Python的数据分析库(例如Pandas)来分析网络流量的模式和趋势。通过统计特定时间段内的流量量、流量分布以及流量类型的变化,可以发现并预测潜在的恶意活动。 最后,通过使用Python的可视化库(例如Matplotlib或Seaborn),该系统可以将分析结果以图表形式呈现出来,帮助管理员更直观地了解网络流量的状况。管理员可以根据图表上的趋势和异常进行进一步的分析,以及制定相应的安全策略和应对措施。 综上所述,恶意流量检测系统是一种基于Python编程语言开发的强大工具,可以通过数据包捕获、机器学习分类、数据分析和可视化等技术手段,实时监控和识别网络通信中的恶意流量,提醒管理员采取相应的安全措施,保护网络的安全和稳定。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值