【毕业设计】基于深度卷积网络的图像检索算法系统

目录

前言

设计思路

一、课题背景与意义

二、算法理论原理

2.1 深度学习

2.2 深度卷积

三、检测的实现

3.1 数据集

3.2 实验环境搭建

3.3 实验及结果分析

最后


前言

       📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。

        🚀对毕设有任何疑问都可以问学长哦!

         选题指导:

        最新最全计算机专业毕设选题精选推荐汇总

        大家好,这里是海浪学长毕设专题,本次分享的课题是

        🎯基于深度卷积网络的图像检索算法系统

设计思路

一、课题背景与意义

        在当今信息爆炸的时代,图像检索成为了一项重要的研究领域。随着社交媒体、在线购物和数字图书馆等应用的普及,人们对于快速、准确地搜索和获取图像的需求日益增长。图像检索算法系统能够通过学习图像的特征表示,实现高效的图像匹配和检索。

二、算法理论原理

2.1 深度学习

        深度学习的网络结构采用了分层结构,通常包括输入层、隐含层(多个层)、输出层。这些层之间通过节点之间的连接进行信息传递和处理。在深度学习网络中,每一层可以看作是一个逻辑回归模型,它们通过非线性激活函数(如ReLU、Sigmoid等)将输入信号转换为输出信号。隐含层的数量和每个隐含层的节点数可以根据具体任务和数据的复杂性进行调整。深度学习网络的分层结构使其能够从数据中自动学习特征和表示,通过多个隐含层的堆叠,网络可以学习到更加抽象和高级的特征表示。这种分层结构有助于网络更好地捕捉数据中的复杂模式和关系,从而实现更高的性能和泛化能力。

【毕业设计】基于深度卷积网络的图像检索算法系统

        深度学习的训练方法采用了特殊的机制来克服梯度消失等问题,其中包括自下而上的非监督学习和自顶向下的监督学习。

  1. 自下而上的非监督学习:
    在这个阶段,使用无标签的数据逐层训练网络的参数。对于每一层,首先训练第一层的参数,然后使用第一层的输出作为输入,训练第二层的参数,依此类推,直到所有层的参数都得到训练。这个过程可以通过无监督学习算法如自编码器或受限玻尔兹曼机(RBM)来实现。通过逐层训练,网络逐渐学习到数据的不同特征表达。

  2. 自顶向下的监督学习:
    在这个阶段,对通过非监督学习得到的各层参数进行二次调整,以进一步优化整个多层模型的参数。这个过程类似于传统神经网络的随机初始化,但是由于在非监督学习阶段已经通过逐层学习得到了较好的初始参数,因此这个初始值更接近最优值。通过监督学习算法(如反向传播)进行训练,模型可以更好地适应标记数据,提高训练效果。

【毕业设计】基于深度卷积网络的图像检索算法系统

2.2 深度卷积

        深度卷积网络是一种特殊类型的神经网络,主要用于处理图像和视觉数据。它通过层层堆叠的卷积层、池化层和全连接层来实现对图像的特征提取和分类。深度卷积网络的核心组件是卷积层。卷积层使用一组卷积核(也称为滤波器)对输入图像进行卷积操作,提取出图像的局部特征。卷积操作通过滑动卷积核在图像上进行计算,生成一个特征图(Feature Map),其中每个元素表示卷积核对应位置的特征响应。

        深度卷积网络通常采用多个卷积层堆叠的结构,通过不同的卷积核和多层的特征图,逐渐学习到图像的更高级别的特征表示。在卷积层之间常常插入池化层(Pooling Layer),用于对特征图进行下采样,减少参数数量并提取更加鲁棒的特征。最后,通过全连接层(Fully Connected Layer)将提取的特征映射到对应的类别或输出。深度卷积网络的训练过程主要使用反向传播算法和梯度下降优化器,通过最小化损失函数来调整网络中的参数,使网络能够更好地拟合训练数据并泛化到新的未见数据。

【毕业设计】基于深度卷积网络的图像检索算法系统

        深度卷积网络的优势在于它们能够自动学习图像的特征表示,而无需手工设计特征。通过多层卷积和非线性激活函数,网络可以逐渐提取出图像中的低级特征和高级语义信息,从而实现对复杂图像的理解和分类。深度卷积网络还具有一些重要的特性,例如参数共享和平移不变性。参数共享指的是在卷积操作中,卷积核的参数在整个图像上共享,减少了模型的参数量,提高了模型的效率。平移不变性指的是对于输入图像的平移操作,网络对应的特征表示不会发生变化,使得网络具有一定的空间不变性。深度卷积网络是一种强大的图像处理工具,通过层层堆叠的卷积层和其他组件,能够从原始图像中提取出具有语义信息的特征表示,从而实现图像分类、目标检测和其他计算机视觉任务。

三、检测的实现

3.1 数据集

        由于网络上没有现有的合适数据集,本研究决定进行网络爬取,收集大量的图像数据,并制作了一个全新的数据集。这个数据集包含了各种不同领域和主题的图像,包括自然风景、建筑物、人物肖像等。通过网络爬取的方式,研究者能够获取真实且多样化的图像数据,为研究提供更准确、可靠的数据基础。利用图像处理技术和数据增强方法,例如旋转、翻转、缩放和添加噪声等,生成了更多变体的图像样本

3.2 实验环境搭建

        实验环境使用Windows操作系统,并利用Python作为主要的编程语言进行算法和模型的实现。使用PyTorch作为深度学习框架,构建和训练神经网络模型。借助Pandas等库,完成数据的加载、处理和转换。这样的实验环境提供了一个方便和高效的平台,用于开发和测试算法系统。

3.3 实验及结果分析

        图像检索算法系统时,可以遵循以下设计思路:

  •  数据集准备和预处理:首先,需要准备一个包含大量图像的数据集。这些图像可以来自于各种来源,例如网络图像库或用户上传的图像。在预处理阶段,可以对图像进行一些预处理操作,如缩放、裁剪和归一化,以确保输入图像具有一致的尺寸和格式。
  • 模型选择和训练:选择适合图像检索任务的深度卷积网络模型,例如常用的ResNet、VGGNet或Inception等。在训练阶段,使用预处理后的图像数据集对选择的模型进行训练。训练过程中,可以采用有监督学习的方法,其中每个图像都与相应的标签或类别关联。通过反向传播算法和梯度下降优化器,调整网络参数以最小化预定义的损失函数。
  • 特征提取和编码:在训练完成后,将使用训练好的深度卷积网络模型来提取图像的特征表示。通过将待检索图像输入到网络中,获取最后一层卷积层或全连接层的输出特征。可以选择使用全局平均池化或全连接层的输出作为图像的特征向量。此外,可以采用降维技术(如主成分分析或自编码器)对特征向量进行编码,以减少特征的维度并提高检索效率。
  • 相似度计算和排序:对于给定的查询图像,通过计算其特征向量与数据库中所有图像的相似度,可以获得图像之间的相似性度量。常用的相似度计算方法包括余弦相似度、欧氏距离或曼哈顿距离等。根据相似度度量,对数据库中的图像进行排序,将最相似的图像排在前面。
  • 用户接口和反馈:设计一个用户友好的接口,允许用户输入查询图像,并显示与查询图像相似的结果。此外,可以提供反馈机制,允许用户根据返回的结果进行反馈和调整,以进一步改善检索结果。
  • 迭代优化和性能评估:通过不断收集用户反馈和相关标注数据,可以使用增量学习或迁移学习方法对深度卷积网络进行迭代优化。此外,进行系统性能评估和指标计算,如准确率、召回率和平均检索精度(mAP),以评估系统的性能和效果。 

相关代码示例:

import tensorflow as tf

def convolutional_model():
    model = tf.keras.models.Sequential()
    # 添加卷积层和池化层
    model.add(tf.keras.layers.Conv2D(filters=32, kernel_size=(3, 3), activation='relu', input_shape=(28, 28, 1)))
    model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2)))
    model.add(tf.keras.layers.Conv2D(filters=64, kernel_size=(3, 3), activation='relu'))
    model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2)))
    # 将多维特征映射展平为向量
    model.add(tf.keras.layers.Flatten())
    # 添加全连接层
    model.add(tf.keras.layers.Dense(units=128, activation='relu'))
    # 添加输出层
    model.add(tf.keras.layers.Dense(units=10, activation='softmax'))
    return model

# 创建模型实例
model = convolutional_model()

# 编译模型
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])

# 加载数据集
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()

实现效果图样例:

创作不易,欢迎点赞、关注、收藏。

毕设帮助,疑难解答,欢迎打扰!

最后

  • 24
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
图像检索是指在图像库中根据用户的需求查找相应的图像。基于深度学习图像检索算法近年来得到了快速发展,取得了优秀的检索效果。 本文将介绍一种基于深度学习图像检索算法,该算法主要基于卷积神经网络(CNN)和循环神经网络(RNN)进行图像特征提取和相似度计算。该算法的主要步骤包括图像预处理、CNN特征提取、RNN编码和相似度计算。 首先,对于输入的图像,需要进行预处理操作,包括图像缩放、裁剪、归一化等。预处理后的图像可以作为CNN的输入。 其次,使用预训练的CNN模型(如VGG、ResNet等)对输入的图像进行特征提取。CNN模型通常包含多个卷积、池化和全连接层,可以有效地提取图像的局部和全局特征。在本算法中,我们将CNN的中间层输出作为图像的特征表示。 接着,将CNN提取的特征输入到RNN中进行编码。RNN是一种递归神经网络,可以对序列数据进行建模。在本算法中,我们将CNN提取的特征序列作为RNN的输入,通过RNN编码得到图像的最终特征表示。 最后,使用余弦相似度计算两个图像之间的相似度。余弦相似度是一种常用的相似度计算方法,可以衡量两个向量之间的夹角余弦值,值越大表示两个向量越相似。在本算法中,我们将图像的特征向量作为余弦相似度的输入,得到两个图像之间的相似度分数。 在实验中,我们使用了一个包含数千张图像的数据集进行评估。实验结果表明,本算法可以在较短的时间内实现高效的图像检索,并且具有较好的检索效果。同时,在实验中,我们还比较了不同的CNN模型和RNN结构对检索效果的影响,得到了一些有价值的结论。 代码实现方面,我们使用了Python编程语言和深度学习框架TensorFlow。代码主要分为数据预处理、CNN特征提取、RNN编码和相似度计算四个部分。具体实现细节可以参考代码仓库(链接待补充)。 总的来说,基于深度学习图像检索算法是一种非常有前景的研究方向,可以为图像检索领域带来更加高效和精确的解决方案。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值