毕业设计:基于计算机视觉的行人交通违规行为检测系统 人工智能

目录

前言

设计思路

一、课题背景与意义

二、算法理论原理

2.1 卷积神经网络

2.2 YOLOv5算法

三、检测的实现

3.1 数据集

3.2 实验环境搭建

3.3 实验及结果分析

最后


前言

       📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。

        🚀对毕设有任何疑问都可以问学长哦!

         选题指导:

        最新最全计算机专业毕设选题精选推荐汇总

        大家好,这里是海浪学长毕设专题,本次分享的课题是

        🎯基于计算机视觉的行人交通违规行为检测系统

设计思路

一、课题背景与意义

        随着城市化进程的加速,城市交通流量日益增加,行人交通安全问题愈发突出。行人交通违规行为(如闯红灯、随意穿行等)不仅威胁到行人的自身安全,还对车辆通行造成影响,进一步加剧交通拥堵和事故发生。因此,研究行人交通违规行为的成因、特征及其干预措施,对于提升城市交通安全、优化交通管理具有重要的现实意义。

二、算法理论原理

2.1 卷积神经网络

        卷积神经网络的基本结构通常包括卷积层、激活层、池化层和全连接层。卷积层是CNN的核心,通过卷积操作提取输入图像的局部特征。利用多个卷积核(滤波器),网络能够捕捉到不同的特征,如边缘、角点和纹理。在卷积层之后,通常会应用非线性激活函数(如ReLU),以增加模型的非线性表达能力。池化层则用于下采样,减少特征图的尺寸,从而降低计算复杂度并提取重要特征。最后,全连接层将提取到的特征映射到最终的输出,即对行人交通违规行为的分类结果。

毕业设计:基于计算机视觉的行人交通违规行为检测系统 人工智能

        在行人交通违规行为检测中,CNN通过多层卷积和池化操作逐步提取图像中的高层次特征。初始卷积层主要关注低级特征,例如边缘和形状,而随着网络深度的增加,后续层会逐渐提取更复杂的语义特征,如行人的姿态、动作和环境信息。这种多层次特征提取机制使得CNN能够有效地捕捉到行人在交通场景中的违规行为,如闯红灯、横穿马路等。此外,数据增强技术(如旋转、翻转和缩放)可以进一步提高模型的鲁棒性,使其能在不同光照和背景条件下准确识别违规行为。

毕业设计:基于计算机视觉的行人交通违规行为检测系统 人工智能

        卷积神经网络的训练过程通常包括数据准备、模型训练和性能评估。首先,需要构建包含标注的行人交通违规行为数据集,以便于模型学习。训练过程中,使用交叉熵损失函数评估模型的预测结果与真实标签之间的差距,并通过反向传播算法更新网络权重。优化器(如Adam或SGD)可用于加速收敛并提高模型性能。在训练后期,采用验证集进行超参数调整和早停策略,以防止过拟合。最终,通过在测试集上的评估,确定模型在实际应用中的准确性和稳定性。

2.2 YOLOv5算法

        YOLOv5的模型采用了一种单阶段的目标检测方法,将目标检测任务视为回归问题,直接从图像像素预测边界框和类别概率。YOLOv5的架构通常包括多个重要组成部分:主干网络、颈部(Neck)和头部。主干网络通常采用CSPNet,其设计旨在提取图像的深层特征。颈部则通过特征融合(如FPN和PAN)结合不同层级的特征,以提高目标检测的精度和鲁棒性。头部负责生成最终的边界框和类别预测,确保模型能够精准识别行人交通违规行为,如闯红灯或不走斑马线。

毕业设计:基于计算机视觉的行人交通违规行为检测系统 人工智能

        YOLOv5采用特征金字塔网络(FPN)和路径聚合网络(PAN)来增强多尺度特征的提取和融合。通过在不同尺度上进行特征检测,模型能够有效地识别大小不同的目标,这对于行人交通违规行为检测至关重要。在特征检测过程中,YOLOv5首先通过卷积层提取低级特征(如边缘和形状),然后通过上采样和下采样操作结合高层次特征(如行人的姿态和运动方向)。这种特征层次的结合,使得YOLOv5能够准确地判断行人在交通场景中的行为,从而识别出潜在的违规行为。此外,YOLOv5还使用了自适应锚框(Anchor boxes),使得模型能够更好地适应不同场景中的行人特征,提高检测精度。

毕业设计:基于计算机视觉的行人交通违规行为检测系统 人工智能

        YOLOv5的训练过程包括数据准备、模型训练和性能评估。首先,需要构建包含标记的行人交通违规行为数据集,以供模型学习。在训练阶段,YOLOv5使用多种数据增强技术(翻转、缩放和颜色变换)来提高模型的泛化能力。损失函数包括位置损失、置信度损失和分类损失,确保模型在定位和分类方面都具有较高的精度。优化器用于更新模型权重,以加速收敛。在训练后期,利用验证集进行超参数调整,采用早停策略防止过拟合。最终,通过在测试集上的评估,模型性能得到验证,确保其在实际应用中具备良好的准确性和稳定性,能够及时识别行人交通违规行为,为交通管理提供有效支持。

        为了提升目标检测模型的特征提取能力,并弥补骨干网络轻量化可能带来的性能损失, 在算法中引入了注意力机制。注意力机制通过神经网络生成掩码,指示不同位置的注意力权重,从而增强模型对关键信息的关注。常见的注意力机制包括通道注意力、空间注意力和混合注意力。通道注意力专注于输入特征图的不同通道,分配各个通道不同的权重;空间注意力则在特征图的空间位置上进行类似操作。而混合注意力则结合了通道和空间注意力的优势,能够同时关注特征图的通道和空间维度。

三、检测的实现

3.1 数据集

        图像采集通过交通监控视频来截取图像,确保所获取的样本能够反映真实的交通场景。监控视频的选择覆盖了不同的时间段、天气条件和交通流量,以提供多样化的样本。采用了专业的标注工具进行图像的标注工作。标注过程中,针对每一帧图像,我们精准标识出行人及其违规行为(如闯红灯、未走斑马线等),为每个违规行为添加边界框和相应的类别标签。数据集按照70%用于训练、15%用于验证和15%用于测试的比例进行划分,确保模型训练的有效性及性能评估的准确性。

3.2 实验环境搭建

        实验在Windows 11操作系统上进行,使用了PyTorch深度学习框架。通过PyTorch的灵活性和高效性,能够快速构建和训练行人交通违规行为检测模型,充分利用其丰富的库和工具,以实现高效的特征提取和目标检测。

3.3 实验及结果分析

        数据准备包括数据集的收集、标注、划分以及数据增强等步骤。从监控视频中截取图像,构建包含行人交通违规行为的标注数据集。数据标注使用专门的工具进行,确保每个违规行为都被准确标记。将数据集划分为训练集、验证集和测试集,通常采用70%用于训练、15%用于验证和15%用于测试的比例。为了提高模型的泛化能力,还应用数据增强技术,如随机旋转、缩放、裁剪和颜色调整等。

from torchvision import transforms

# 数据增强示例
data_transforms = transforms.Compose([
    transforms.RandomResizedCrop(256),
    transforms.RandomHorizontalFlip(),
    transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.2),
    transforms.ToTensor(),
])

        将结合CNN、YOLOv5s和CBAM注意力机制来设计行人交通违规行为检测模型。YOLOv5s作为一种高效的目标检测框架,提供了实时检测的能力,而CBAM注意力机制则用于增强特征提取能力。CBAM通过对特征图的通道和空间维度进行加权,使模型更加关注重要特征并抑制背景噪声。模型的构建过程包括定义YOLOv5的主干网络,集成CBAM模块,并为检测任务配置合适的参数设置。

import torch
from models.yolo import Model  # 假设YOLOv5模型在该路径下
from cbam import CBAM  # 导入CBAM模块

# 构建YOLOv5模型并添加CBAM
model = Model(cfg='path/to/yolov5s.yaml')  # 加载YOLOv5s配置
model.model[-1].add_module('cbam', CBAM(in_channels=model.model[-1].nc))  # 添加CBAM模块

        选择合适的损失函数和优化器来更新模型的权重。在训练过程中,使用训练集进行模型的前向传播和反向传播,计算损失并优化模型参数。同时,我们利用验证集监控模型的性能,调整超参数以防止过拟合。训练过程通常需要多个epoch,每个epoch结束后评估模型在验证集上的表现,以确保模型逐步提高性能。

import torch.optim as optim

# 设置优化器和损失函数
optimizer = optim.Adam(model.parameters(), lr=0.001)
criterion = torch.nn.BCEWithLogitsLoss()  # 二分类损失

# 训练循环
for epoch in range(num_epochs):
    model.train()
    for images, targets in train_loader:
        optimizer.zero_grad()
        outputs = model(images)
        loss = criterion(outputs, targets)
        loss.backward()
        optimizer.step()

        评估指标主要包括精确率(P)、召回率(R)和平均精度均值(mAP)。精确率衡量了模型预测为正类的样本中有多少是真正的正类,而召回率则衡量了模型正确识别出的正类样本占所有正类样本的比例。mAP是综合考虑精确率和召回率的指标,通常通过计算不同阈值下的AP值来获得。

实现效果图样例:

创作不易,欢迎点赞、关注、收藏。

毕设帮助,疑难解答,欢迎打扰!

最后

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值