目录
前言
📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。
🚀对毕设有任何疑问都可以问学长哦!
选题指导:
大家好,这里是海浪学长毕设专题,本次分享的课题是
🎯基于用户个性化需求的杭州市旅游景点推荐系统
设计思路
一、课题背景与意义
杭州市作为中国著名的旅游城市,凭借其丰富的历史文化和自然风光,吸引了大量游客。然而,面对众多的旅游景点,游客往往难以选择最符合自身兴趣和需求的目的地。传统的旅游推荐方式多为静态推荐,缺乏个性化和智能化,无法满足游客日益多样化的需求。因此,开发一个个性化的杭州市旅游景点推荐系统,将能够根据游客的偏好、历史行为和社交网络数据,为其提供量身定制的旅游建议,从而提升旅游体验和满意度。
二、算法理论原理
2.1 情感分析
基于词典的情感分析是一种常见的文本情感分析方法,其过程主要包括建立情感词典、文本预处理、情感计算和结果分析等步骤。首先,通过收集包含积极、消极和中性情感的词汇建立情感词典。对文本信息进行分词、去除停用词和特殊字符等操作,将文本转化为可分析的格式。再根据情感词及其上下文的情况,给每个情感词赋予相应的情感极性值。最后,将情感倾向进行分类,得到文本的情感倾向。
基于机器学习的情感分析利用机器学习算法从数据中学习情感的特征和模式,通过训练模型来识别文本中的情感倾向。其过程通常可以概括为数据准备、特征提取、模型选择以及模型训练和评估等步骤。先收集和准备用于训练和测试的文本数据;然后,将文本数据转换为能够被机器学习模型处理的数值特征,通过选择合适的机器学习模型,将已标记的训练数据代入模型进行训练。最后,对训练好的模型进行测试和优化,通过不断调整参数的方式,提高模型的准确性。
基于词典的方法和基于机器学习的方法已经不能很好地处理海量评论的情感分类。基于深度学习的情感分析是一个快速发展的研究领域,在处理自然语言任务方面表现突出。它更有效地利用大数据自动学习文本的高层语义,提高情感分析的准确性和性能。深度学习模型如RNN、LSTM、CNN、Transformer等,经过大量数据训练后,能够自动提取特征、捕捉文本中的语义关系,进行情感分析。
基于机器学习的方法虽然能够获得更高的分类准确率且计算速度快,但其精确度取决于高质量的标注训练集,需较高的人工成本和时间成本。基于深度学习的方法具备更强的表达能力和模型泛化能力,并可进行无监督学习,无需大量人工标注,但其应用能力受制于缺乏大规模的训练数据。基于情感词典的情感分析虽然在情感分类效果上不如前两者表现优秀,但只需在词典中扩展特定领域的专业词汇,即可实现良好的分类效果。
2.2 推荐方法
利用网络爬虫技术对景点在线评论进行数据获取和预处理;为提高基于词典情感分析的准确性,对已有词典进行扩充;运用情感分析技术,对各景点属性评价进行情感分析,得到针对景点各属性评论的情感强度;统计分析待出行游客评论信息,得到游客偏好,基于游客个人旅游偏好,利用随机TOPSIS排序方法综合考虑景点多个属性评价结果,计算各景点与游客偏好之间的贴近程度,对景点进行排序,提供更有针对性的推荐结果。该方法主要涉及景点评论获取及数据预处理、评论情感分析、游客偏好计算以及利用TOPSIS方法对景点排序等步骤。
BERT自然语言处理模型主要创新在于引入了双向Transformer架构,使模型能够同时关注目标词汇的左侧和右侧上下文,从而获得更丰富的语义信息。这种双向性是BERT相较于以往单向语言模型的显著优势,能够更好地理解句子中单词之间的复杂关系。BERT的训练过程分为两个阶段:预训练和微调。在预训练阶段,BERT使用大规模文本语料进行自监督学习,主要通过两种任务进行训练。第一种任务是随机遮蔽输入句子中的一些单词,模型需要根据上下文预测这些被遮蔽的单词。第二种任务是判断给定的两个句子是否相邻。这一训练方式使得BERT能够学习到丰富的上下文表示和句子间的关系。
情感分析包括情感分析、情感生成、情感识别、情感表达、情感增强等多种技术。重点在于情感倾向识别,识别文本表达的偏好或不满的情感程度和方向。情感方向根据主观倾向性分为积极、中立、消极三种。情感程度描述文本中情感词所表达的情感程度指标,通常根据情感词情感强度及上下文等因素确定权重值,以此确定情感程度。研究目标在于细化游客对景点各属性评论,需找到景点属性词位置,依据各属性词上下文查找针对各属性情感词,最后对景点各方面进行情感分析。在景点评论中存在多个词汇表达同一含义问题,不同游客可能采用不同词汇描述同一属性,如“票价”、“门票”、“费用”代表同一意思。为消除多个词汇表达同一意思情况,采用同义词合并处理方法,方便对各景点属性进行识别。为提高情感分析准确性,需对已有情感词典扩充,通过加入景点领域特有词汇构建新词典。
三、检测的实现
3.1 数据集
评论信息作为推荐依据,需利用一些高效工具或技术手段提升数据获取效率。网络爬虫是一种自动化网页浏览程序,通过规则和算法,从网络爬取和收集数据。获取数据流程通常为:程序通过模拟浏览器上网方式,获取网站初始URL,在抓取初始URL网页数据过程中,新的URL地址添加到队列中;通过判断程序设置的停止条件,选择继续爬取或存入数据库。
预处理环节涵盖数据清洗、中文分词、词性标注、去除停用词等多个步骤。在互联网环境下,中文文本数据往往以非结构化形式生成,存在大量噪音,如表情符号、标点符号、停用词等。噪音数据缺乏实际意义,若不进行预处理直接用于情感分析,将对情感分类的准确度和效果产生影响。选取Jieba分词进行文本预处理,作为应用广泛且技术成熟的分词工具,语料库更新及时,能够精准判别各个单词的词性。
3.2 实验环境搭建
3.3 实验及结果分析
通过网络爬虫技术从各大旅游网站和社交媒体平台获取杭州市旅游景点的用户评论数据。通常使用Python的爬虫框架(如Scrapy或BeautifulSoup)来实现这一过程,程序会模拟用户行为,提取评论内容并存储到数据库或文件中。对收集到的评论进行清洗和格式化。此过程包括去除HTML标签、处理乱码、分词和去除停用词等。这一步骤确保后续分析的数据质量。
import jieba
def preprocess_comments(comments):
cleaned_comments = []
for comment in comments:
# 去除HTML标签
cleaned = BeautifulSoup(comment, 'html.parser').get_text()
# 中文分词
words = jieba.cut(cleaned)
# 去除停用词
filtered_words = [word for word in words if word not in stopwords]
cleaned_comments.append(' '.join(filtered_words))
return cleaned_comments
# 假设comments是已经收集到的评论列表
preprocessed_comments = preprocess_comments(comments)
情感分析是推荐系统的核心部分,旨在识别用户评论中的情感倾向。可以使用情感词典或深度学习模型(如BERT)来对评论进行情感判断,获取每条评论的情感极性和强度。从处理后的评论中提取有用的特征,以便训练模型。可以使用TF-IDF、词袋模型或Word2Vec等方法将文本转化为向量表示。利用提取的特征和情感标签训练机器学习模型,如支持向量机、随机森林或深度学习神经网络。通过交叉验证和超参数优化提升模型性能。
from transformers import BertTokenizer, BertForSequenceClassification
import torch
# 加载BERT模型和分词器
tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
model = BertForSequenceClassification.from_pretrained('bert-base-chinese')
def analyze_sentiment(comments):
sentiments = []
for comment in comments:
inputs = tokenizer(comment, return_tensors='pt')
outputs = model(**inputs)
predicted_class = torch.argmax(outputs.logits).item()
sentiments.append(predicted_class) # 0: 消极, 1: 积极
return sentiments
sentiment_results = analyze_sentiment(preprocessed_comments)
根据用户的偏好和评论情感分析结果,利用推荐算法(如协同过滤或基于内容的推荐)生成个性化的景点推荐列表,为用户提供更符合其需求的旅游建议。
实现效果图样例:
创作不易,欢迎点赞、关注、收藏。
毕设帮助,疑难解答,欢迎打扰!