运筹学之线性规划(2)

目录

1.线性规划的基础模型和模型术语

1.1 基础模型

1.2 模型术语

2.基本知识

2.1 超平面

2.2 可行解集(Feasible Solution Set)

3.图解法和单纯性法

3.1 图解法

3.2 单纯性法

4.仿射集、凸集和圆锥体

4.1 仿射集

4.2 凸集

4.3 圆锥体

5.线性规划基本定理

5.1 分辨率定理

5.2 线性规划基本定理


1.线性规划的基础模型和模型术语

1.1 基础模型

1.2 模型术语

1.2.1 可行域 (Feasible Region)

定义:线性规划中所有满足约束条件的决策变量取值构成的集合

特性: 

  • 顶点重要性:最优解必在顶点处

  • 几何特征:由约束条件围成的凸多边形(二维)或多面体(高维)

  • 空集判定:当约束条件矛盾时无解

1.2.2 有界可行域(Bounded feasible domain

定义:所有可行解的取值均被限制在有限范围内,不存在无限延伸方向。

特征:

  • 封闭性:可行域为凸多面体且所有顶点坐标有限(如二维时为凸多边形)

  • 顶点确定性:顶点数量有限,且每个顶点对应至少nn个紧约束(约束取等号)

  • 最优解必存在:若目标函数连续且可行域有界,则至少存在一个最优解(极值定理)

  • 多重最优可能:目标函数可能与某条边平行,导致该边上所有点均为最优解

1.2.3 可行解(Feasible solution)

定义:满足所有约束条件的决策变量取值组合
特性

  • 几何意义:位于可行域(凸多面体)内部或边界上的任意点

  • 存在性验证:必须通过全部线性不等式/等式检验

1.2.4 基本可行解 (Basic Feasible Solution)

定义:既是基本解又满足非负性条件的解
特性

  • 最优解候选:单纯形法通过遍历BFS寻找最优解

  • 顶点对应:每个BFS对应可行域的一个顶点(二维时为多边形顶点)

1.2.5 最优解 (Optimal Solution)

定义:使目标函数达到极值(例如最大利润或最小成本)的可行解
特性

  • 唯一性:可能唯一,也可能存在无限多解

  • 灵敏度边界:当目标系数在允许范围内波动时,最优基不变

  • 多重最优场景:若目标函数平行于某条边,则该边上所有点均为最优解

2.基本知识

2.1 超平面

定义:在n维空间中,超平面是一个(n-1)维的线性子空间,其几何意义是将空间划分为两个半空间的边界

数学表达为线性方程:

关键特性

  1. 几何意义在二维空间中为直线,三维空间中为平面,高维空间中推广为超平面
  2. 分类边界:在机器学习(如SVM)中,超平面是区分不同类别的最优决策边界
  3. 距离计算:点X0到超平面的距离为:      
  4. 法向量指向上半空间

2.2 可行解集(Feasible Solution Set)

定义:在优化问题中,满足所有约束条件的解的集合,称为可行解集。其数学形式为:

核心性质

  1. 凸性:若所有约束为凸函数,则可行解集为凸集
  2. 边界与顶点:在凸多面体可行域中,最优解常出现在顶点
  3. 空集与无界:约束矛盾时可行集为空;若目标函数在可行域上无界,则问题无解

3.图解法和单纯性法

3.1 图解法

定义:图解法是一种通过几何图形求解两个变量线性规划问题的直观方法,通过在坐标系中绘制约束条件、目标函数和可行域,直接观察最优解的位置

案例:

优缺点

  • 优点:直观易理解,适合教学和小规模问题
  • 缺点:仅适用于两个变量,无法处理高维问题

3.2 单纯性法

定义:单纯形法是求解多变量线性规划问题的迭代算法,通过遍历可行域的顶点(基本可行解),逐步优化目标函数值直至达到最优解

详细案例和讲解见:运筹学之线性规划(单纯性法)-CSDN博客

4.仿射集、凸集和圆锥体

4.1 仿射集

定义:集合 A⊆Rn称为仿射集,若对任意两点 x1,x2∈A 及任意标量 θ∈R,其仿射组合 θ*X1+(1−θ)*X2​ 仍属于 A

数学表达:∀X1,X2∈A, θ∈R  ⟹  θ*X1+(1−θ)*X2∈A

几何意义:

  • 仿射集是“平直”的几何对象,如直线、平面或超平面
  • 不要求包含原点:与向量空间(子空间)不同,仿射集可通过平移子空间得到

示例

  • 二维空间中,直线 y=2x+1是仿射集(不经过原点)
  • 三维空间中,平面 x+y+z=5是仿射集

4.2 凸集

定义:集合 C⊆Rn称为凸集,若对任意两点 x1,x2∈C及标量 θ∈[0,1],其凸组合 θ*X1+(1−θ)*X2仍属于 C。

数学表达:∀X1,X2∈C, θ∈[0,1]  ⟹  θ*X1+(1−θ)*X2∈C

几何意义:

  • 凸集中任意两点的线段完全位于集合内部(如圆形、矩形、多面体)
  • 非凸示例:月牙形、星形区域(存在“凹陷”或“孔洞”)

示例

  • 单位球 {x∣∥x∥≤1}是凸集
  • 多面体 {x∣Ax≤b}是凸集(线性不等式约束的交集)

4.3 圆锥体

定义:集合 K⊆Rn 称为凸圆锥,若满足:

  1. 数乘封闭性:∀X∈K, λ≥0  ⟹  λX∈K
  2. 加法封闭性:∀X1,X2∈K  ⟹  X1+X2∈K

数学表达:∀X1,X2∈K, λ1,λ2≥0  ⟹  λ1*X1+λ2*X2∈K

几何意义:

  • 凸圆锥是从原点出发的射线集合,且任意两射线的“夹角区域”也属于圆锥(如第一象限、冰激凌筒形状)
  • 非凸圆锥:如两条不共线的射线(不满足加法封闭性)

示例

  • 非负象限 R+n={x∣xi≥0}是凸圆锥
  • 二阶锥 {(x,t)∣∥x∥≤t} 是凸圆锥

5.线性规划基本定理

5.1 分辨率定理

定义
分辨率定理(又称分解定理)指出,任何非空多面体(线性规划的可行域)可表示为顶点(极点)极方向(极射线)线性子空间的组合。具体形式为:

几何结构分解:

  • 顶点对应可行域的边界点(如线性规划的基可行解)
  • 极方向描述可行域无限延伸的方向(如无界问题的可行增长方向)
  • 子空间表示可行域可能的平移自由度(如等式约束下的平行移动)

示例
考虑可行域 P={x∈R2∣x1+x2≥1, x1≥0}:

  • 顶点:(1,0)和 (0,1)
  • 极方向:沿 x1 轴正方向(d=(1,0)
  • 表示:P=conv((1,0),(0,1))+cone((1,0))

5.2 线性规划基本定理

定义
线性规划基本定理包含以下核心命题:

  1. 可行解存在性:若线性规划问题有可行解,则至少存在一个基可行解(顶点)
  2. 最优解存在性:若问题有最优解,则至少存在一个顶点是最优解
  3. 强对偶性:原始问题与对偶问题同时有解时,目标函数值相等

数学表达

  • 基可行解存在性
    rank(A)=m  ⟹  ∃xB=B−1b≥0, xN=0
  • 顶点最优性
    x∗=arg⁡max⁡ c⊤x  ⟹  x∗∈vertices(P)

两者的本质和联系:

  • 分辨率定理揭示线性规划可行域的几何本质,将复杂多面体拆解为顶点、方向与子空间的组合

  • 线性规划基本定理确立顶点解的核心地位,为算法设计(如单纯形法)与对偶分析提供理论基石

  • 两定理共同构成线性规划的数学骨架,支撑从理论分析到工业应用的完整链条

有错误和其它想法帮忙指正,定即时回复,感谢支持!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值