目录
1.线性规划的基本概念
1.1 基础模型
1.2 模型术语
模型术语在上一篇文章中已经详细说明,本篇不再赘述,如有需要可前往
(运筹学之线性规划(2)-CSDN博客)中学习线性规划的基础知识。
1.2.1 可行域 (Feasible Region)
定义:线性规划中所有满足约束条件的决策变量取值构成的集合
1.2.2 有界可行域(Bounded feasible domain)
定义:所有可行解的取值均被限制在有限范围内,不存在无限延伸方向。
1.2.3 可行解(Feasible solution)
定义:满足所有约束条件的决策变量取值组合
1.2.4 基本可行解 (Basic Feasible Solution)
定义:既是基本解又满足非负性条件的解
1.2.5 最优解 (Optimal Solution)
定义:使目标函数达到极值(例如最大利润或最小成本)的可行解.
2.单纯形法的基本思想和步骤
2.1 基本思想
单纯形法是一种基于几何顶点遍历的线性规划求解算法,其核心逻辑可概括为:
- 顶点择优原理:
- 线性规划的可行域构成凸多面体,最优解必出现在顶点(基可行解)上。
- 通过有限步迭代,从一个顶点沿目标函数改进方向移动到相邻顶点。
- 方向选择机制:
- 利用**检验数(Reduced Cost)**判断当前解的改进潜力。
- 若存在正检验数(最大化问题)或负检验数(最小化问题),则目标函数可继续优化。
- 终止条件:
- 所有检验数均不满足优化方向时达到最优解。
- 若发现无界方向(存在无限改进空间),则问题无界。
现实案例:
假设你要把货物从3个仓库运到3个超市,想找到总运费最低的方案。单纯形法就像智能导航:
- 先随便选个运输方案(比如全走最近路线)
- 发现某条路线运费太贵,就改走便宜路线
- 不断调整直到找不到更省钱的方案
2.2 操作流程(以上述现实案例操作)
2.2.1 问题标准化改造(将现实问题转化为数学标准形式 )
约束转化(库存限制 → 等式) :
-
原约束:
(从产地i运出量不超过库存)
-
加松弛变量:
,其中Si ≥ 0
- 几何意义:松弛变量Si表示产地i的剩余库存
目标函数统一:
- 最小化转最大化:若原问题求最小成本Z,则改写为最大化−Z
- 数学公式:
2.2.2 构建初始基可行解
操作:设置虚拟运输方案作为起点
基变量选择:
- 初始基:选择松弛变量Si和人工变量(如有)构成基
- 解值计算:
单纯形表初始化:
基变量 | x11 | x12 | ... | s1s | ... | 右端项 |
---|---|---|---|---|---|---|
s1 | 1 | 1 | ... | 1 | ... | 56 |
... | ... | ... | ... | ... | ... | ... |
检验数 | −c11 | −c12 | ... | 0 | ... | 0 |
2.2.3 检验数计算与突破口定位
核心公式:
符号说明:
操作示例:
- 发现败家路径:若X22检验数σ22=240>0(最大化问题)
- 止损潜力:每减少1吨X22运输量,可节省240−λ元(λ为新路径成本)
2.2.4 基变换与运量调整
进基变量选择:
- 规则:选σj>0中最大者(最大化问题)
出基变量确定(最小比值测试):
主元消去运算:
- 枢轴行:
为枢轴元素
- 行变换公式:
2.2.5 迭代终止与最优解验证
终止条件:
3.非退化线性问题中的基本可行解和极点问题
3.1 核心概念定义(其余定义参考第二节)
- 基变量是从决策变量和松弛变量中选出的一组变量,其对应的系数矩阵列向量线性无关,且数量等于约束方程个数(m个)
- 非基变量:未被选入基的变量,其值在基本可行解中恒为0
- 极点:凸集S中的点x若不能表示为其他两点的凸组合
- 非退化特性:xB>0(所有基变量严格为正),无零分量
- 双射关系:一个映射同时满足单射(一一映射)和满射(全覆盖)
3.2 非退化条件下的对应关系
一 一对应定理:
- 核心结论:在非退化线性规划中,基本可行解与极点存在双射关系
- 证明思路:
- 正向:每个BFS对应唯一极点
- 非退化BFS有m个正变量,对应n个有效约束(m等式约束+(n−m)非负约束)
- 该点位于nn维空间中nn个超平面交点,即顶点
- 逆向:每个极点对应唯一BFS
- 极点处至少n个约束生效,其中m个线性无关约束确定基变量
- 正向:每个BFS对应唯一极点
3.3 构造性证明示例
- 标准化:引入松弛变量s1,s2≥0,约束变为:x1+x2+s1=4;2x1+x2+s2=6
- 非退化BFS计算:
- 基变量选s1,s2:解为(0,0,4,6),对应原点极点(0,0)
- 基变量选x1,s2:解为(4,0,0,−2)不可行(退化出现)
- 基变量选x2,s1:解为(0,4,0,2),对应极点(0,4)
- 基变量选x1,x2:解为(2,2,0,0),对应极点(2,2)
3.4 几何可视化验证
- 可行域:四边形顶点为(0,0),(0,4),(2,2),(3,0)
- 对应关系:
- (0,0):退化BFS(s2=6>0但基变量s2被强制排除)
- (0,4):非退化BFS(x2=4,s1=0,严格基变量x2,s1)
- (2,2):非退化BFS(x1=2,x2=2)
- (3,0):退化BFS(s1=1>0但未选入基)
4.总结
单纯形法是解决线性规划问题的经典算法,其核心是通过迭代在可行域的顶点间移动,逐步逼近最优解。单纯形法因其直观性和实际效能,至今仍是运筹学、经济学等领域的核心工具,但其局限性也推动了现代优化算法的多元发展。
有错误和其它想法帮忙指正,定即时回复,感谢支持!