运筹学之线性规划(单纯性法)

目录

1.线性规划的基本概念

1.1 基础模型

1.2 模型术语

2.单纯形法的基本思想和步骤

2.1 基本思想

2.2 操作流程(以上述现实案例操作) 

3.非退化线性问题中的基本可行解和极点问题

3.1 核心概念定义(其余定义参考第二节)

3.2 非退化条件下的对应关系

3.3 构造性证明示例 

3.4 几何可视化验证 

4.总结


1.线性规划的基本概念

1.1 基础模型

1.2 模型术语

模型术语在上一篇文章中已经详细说明,本篇不再赘述,如有需要可前往

运筹学之线性规划(2)-CSDN博客)中学习线性规划的基础知识。

1.2.1 可行域 (Feasible Region)

定义:线性规划中所有满足约束条件的决策变量取值构成的集合

1.2.2 有界可行域(Bounded feasible domain

定义:所有可行解的取值均被限制在有限范围内,不存在无限延伸方向。

1.2.3 可行解(Feasible solution)

定义:满足所有约束条件的决策变量取值组合

1.2.4 基本可行解 (Basic Feasible Solution)

定义:既是基本解又满足非负性条件的解

1.2.5 最优解 (Optimal Solution)

定义:使目标函数达到极值(例如最大利润或最小成本)的可行解.

 

2.单纯形法的基本思想和步骤

2.1 基本思想

单纯形法是一种基于几何顶点遍历的线性规划求解算法,其核心逻辑可概括为:

  1. 顶点择优原理
    • 线性规划的可行域构成凸多面体,最优解必出现在顶点(基可行解)上。
    • 通过有限步迭代,从一个顶点沿目标函数改进方向移动到相邻顶点。
  2. 方向选择机制
    • 利用**检验数(Reduced Cost)**判断当前解的改进潜力。
    • 若存在正检验数(最大化问题)或负检验数(最小化问题),则目标函数可继续优化。
  3. 终止条件
    • 所有检验数均不满足优化方向时达到最优解。
    • 若发现无界方向(存在无限改进空间),则问题无界。

现实案例

假设你要把货物从3个仓库运到3个超市,想找到总运费最低的方案。单纯形法就像智能导航:

  • 先随便选个运输方案(比如全走最近路线)
  • 发现某条路线运费太贵,就改走便宜路线
  • 不断调整直到找不到更省钱的方案

 

2.2 操作流程(以上述现实案例操作) 

​​​​2.2.1 问题标准化改造(将现实问题转化为数学标准形式 

约束转化(库存限制 → 等式) :

  • 原约束(从产地i运出量不超过库存)

  • 加松弛变量,其中Si ≥ 0

  • 几何意义:松弛变量Si表示产地i的剩余库存

目标函数统一:

  • 最小化转最大化:若原问题求最小成本Z,则改写为最大化−Z
  • 数学公式

2.2.2 构建初始基可行解

操作:设置虚拟运输方案作为起点

基变量选择:

  • 初始基:选择松弛变量Si​和人工变量(如有)构成基
  • 解值计算

单纯形表初始化:

基变量x11x12...s1s...右端项
s111...1...56
.....................
检验数−c11−c12...0...0

2.2.3 检验数计算与突破口定位

核心公式

符号说明: 

操作示例

  • 发现败家路径:若X22检验数σ22=240>0(最大化问题)
  • 止损潜力:每减少1吨X22运输量,可节省240−λ元(λ为新路径成本)

2.2.4 基变换与运量调整

进基变量选择:

  • 规则:选σj​>0中最大者(最大化问题) 

出基变量确定(最小比值测试): 

     

主元消去运算:

  • 枢轴行​为枢轴元素
  • 行变换公式

2.2.5 迭代终止与最优解验证

终止条件

     

    3.非退化线性问题中的基本可行解和极点问题

    3.1 核心概念定义(其余定义参考第二节)

    • 基变量是从决策变量和松弛变量中选出的一组变量,其对应的系数矩阵列向量线性无关,且数量等于约束方程个数(m个)
    • 非基变量:未被选入基的变量,其值在基本可行解中恒为0
    • 极点:凸集S中的点x若不能表示为其他两点的凸组合
    • 非退化特性:xB>0(所有基变量严格为正),无零分量
    • 双射关系:一个映射同时满足单射(一一映射)满射(全覆盖)

    3.2 非退化条件下的对应关系

    一 一对应定理:

    • 核心结论:在非退化线性规划中,基本可行解与极点存在双射关系
    • 证明思路
      • 正向:每个BFS对应唯一极点
        • 非退化BFS有m个正变量,对应n个有效约束(m等式约束+(n−m)非负约束)
        • 该点位于nn维空间中nn个超平面交点,即顶点
      • 逆向:每个极点对应唯一BFS
        • 极点处至少n个约束生效,其中m个线性无关约束确定基变量

    3.3 构造性证明示例 

    • 标准化:引入松弛变量s1,s2≥0,约束变为:x1+x2+s1=4;2x1+x2+s2=6
    • 非退化BFS计算
      • 基变量选s1,s2​:解为(0,0,4,6),对应原点极点(0,0)
      • 基变量选x1,s2​:解为(4,0,0,−2)不可行(退化出现)
      • 基变量选x2,s1​:解为(0,4,0,2),对应极点(0,4)
      • 基变量选x1,x2​:解为(2,2,0,0),对应极点(2,2)

    3.4 几何可视化验证 

    • 可行域:四边形顶点为(0,0),(0,4),(2,2),(3,0)
    • 对应关系
      • (0,0):退化BFS(s2=6>0但基变量s2​被强制排除)
      • (0,4):非退化BFS(x2=4,s1=0,严格基变量x2,s1​)
      • (2,2):非退化BFS(x1=2,x2=2)
      • (3,0):退化BFS(s1=1>0但未选入基)

     

    4.总结

            单纯形法是解决线性规划问题的经典算法,其核心是通过迭代在可行域的顶点间移动,逐步逼近最优解。单纯形法因其直观性和实际效能,至今仍是运筹学、经济学等领域的核心工具,但其局限性也推动了现代优化算法的多元发展。

    有错误和其它想法帮忙指正,定即时回复,感谢支持!

    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值