1. 题⽬链接:⾯试题17.16.按摩师
2. 题⽬描述:
3. 解法(动态规划):
算法思路:
1. 状态表⽰:
对于简单的线性dp ,我们可以⽤「经验+题⽬要求」来定义状态表⽰:
i. 以某个位置为结尾,巴拉巴拉;
ii. 以某个位置为起点,巴拉巴拉。
这⾥我们选择⽐较常⽤的⽅式,以某个位置为结尾,结合题⽬要求,定义⼀个状态表⽰: dp[i] 表⽰:选择到i 位置时,此时的最⻓预约时⻓。
但是我们这个题在i 位置的时候,会⾯临「选择」或者「不选择」两种抉择,所依赖的状态需要 细分:
▪ f[i] 表⽰:选择到i 位置时, nums[i] 必选,此时的最⻓预约时⻓;
▪ g[i] 表⽰:选择到i 位置时, nums[i] 不选,此时的最⻓预约时⻓。
2. 状态转移⽅程:
因为状态表⽰定义了两个,因此我们的状态转移⽅程也要分析两个: 对于f[i] :
▪ 如果nums[i] 必选,那么我们仅需知道i - 1 位置在不选的情况下的最⻓预约时⻓, 然后加上nums[i] 即可,因此f[i] = g[i - 1] + nums[i] 。 对于g[i] :
▪ 如果nums[i] 不选,那么i - 1 位置上选或者不选都可以。因此,我们需要知道i - 1 位置上选或者不选两种情况下的最⻓时⻓,因此[i] = max(f[i - 1], g[i - 1]) 。
3. 初始化:
这道题的初始化⽐较简单,因此⽆需加辅助节点,仅需初始化f[0] = nums[0], g[0] = 0 即可。
4. 填表顺序
根据「状态转移⽅程」得「从左往右,两个表⼀起填」。
5. 返回值
根据「状态表⽰」,应该返回max(f[n - 1], g[n - 1]) 。
C++算法代码:
class Solution
{
public:
int massage(vector<int>& nums)
{
int n=nums.size();
//处理边界条件
if(n==0)
{
return 0;
}
//建表
vector<int>f(n); //此点选之后的最大时间
vector<int>g(n); //此点不选后的最大时间
//初始化
f[0]=nums[0],g[0]=0;
//填表
for(int i=1;i<n;i++)
{
f[i]=g[i-1]+nums[i];
g[i]=max(f[i-1],g[i-1]);
}
return max(f[n-1],g[n-1]);
}
};
Java算法代码:
class Solution
{
public int massage(int[] nums)
{
// 1. 创建 dp 表
// 2. 初始化
// 3. 填表
// 4. 返回值
int n = nums.length;
if (n == 0) return 0; // 处理边界条件
int[] f = new int[n];
int[] g = new int[n];
f[0] = nums[0];
for (int i = 1; i < n; i++)
{
f[i] = g[i - 1] + nums[i];
g[i] = Math.max(f[i - 1], g[i - 1]);
}
return Math.max(g[n - 1], f[n - 1]);
}
}