(算法)按摩师————<动态规划>

1. 题⽬链接:⾯试题17.16.按摩师

2. 题⽬描述:

3. 解法(动态规划):

算法思路:

1. 状态表⽰:

对于简单的线性dp ,我们可以⽤「经验+题⽬要求」来定义状态表⽰:

        i. 以某个位置为结尾,巴拉巴拉;

        ii. 以某个位置为起点,巴拉巴拉。

这⾥我们选择⽐较常⽤的⽅式,以某个位置为结尾,结合题⽬要求,定义⼀个状态表⽰: dp[i] 表⽰:选择到i 位置时,此时的最⻓预约时⻓。

但是我们这个题在i 位置的时候,会⾯临「选择」或者「不选择」两种抉择,所依赖的状态需要 细分:

        ▪ f[i] 表⽰:选择到i 位置时, nums[i] 必选,此时的最⻓预约时⻓;

        ▪ g[i] 表⽰:选择到i 位置时, nums[i] 不选,此时的最⻓预约时⻓。

2. 状态转移⽅程:

因为状态表⽰定义了两个,因此我们的状态转移⽅程也要分析两个: 对于f[i] :

        ▪ 如果nums[i] 必选,那么我们仅需知道i - 1 位置在不选的情况下的最⻓预约时⻓, 然后加上nums[i] 即可,因此f[i] = g[i - 1] + nums[i] 。 对于g[i] :

        ▪ 如果nums[i] 不选,那么i - 1 位置上选或者不选都可以。因此,我们需要知道i - 1 位置上选或者不选两种情况下的最⻓时⻓,因此[i] = max(f[i - 1], g[i - 1]) 。

3. 初始化:

这道题的初始化⽐较简单,因此⽆需加辅助节点,仅需初始化f[0] = nums[0], g[0] = 0 即可。

4. 填表顺序

根据「状态转移⽅程」得「从左往右,两个表⼀起填」。

5. 返回值

根据「状态表⽰」,应该返回max(f[n - 1], g[n - 1]) 。 

C++算法代码: 

class Solution 
{
public:
    int massage(vector<int>& nums)
    {
        int n=nums.size();
        //处理边界条件
        if(n==0)
        {
            return 0;
        }
        //建表
        vector<int>f(n);    //此点选之后的最大时间
        vector<int>g(n);    //此点不选后的最大时间
        //初始化
        f[0]=nums[0],g[0]=0;
        //填表
        for(int i=1;i<n;i++)
        {
            f[i]=g[i-1]+nums[i];
            g[i]=max(f[i-1],g[i-1]);
        }
        return max(f[n-1],g[n-1]);
    }
};

Java算法代码:

class Solution
{
	public int massage(int[] nums)
	{
		// 1. 创建 dp 表 
		// 2. 初始化 
		// 3. 填表 
		// 4. 返回值 
		int n = nums.length;
		if (n == 0) return 0; // 处理边界条件 

		int[] f = new int[n];
		int[] g = new int[n];
		f[0] = nums[0];
		for (int i = 1; i < n; i++)
		{
			f[i] = g[i - 1] + nums[i];
			g[i] = Math.max(f[i - 1], g[i - 1]);
		}
		return Math.max(g[n - 1], f[n - 1]);
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

课堂随笔

感谢支持~~~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值