Z2.3微分方程的经典解法
1.经典解
齐次解是对应齐次微分方程的解:
特征根为
2.齐次解的常用函数形式
根据不同特征根所对应的齐次解
齐次解是齐次方程中的解, 特解是原方程中的解
3.特解的常用函数形式
不同激励所对应的特解
当激励为t时的求解
4.求全解的步骤
- 通过特征方程求出特征根
- 根据特征根设出对应的齐次解
- 根据激励设出对应的特解
- 将特解代入微分方程并求解特解的未知系数
- 写出全解后根据已知条件带入求出齐次解的未知系数
Z2.4连续系统的初始值
例题
Z2.5零输入响应
零输入响应是由x,系统里的初始值产生,零状态是由输入信号产生
一个全响应就等于零输入响应+零状态响应
求解步骤
- 设定齐次解
- 代入初始值,求待定系数
一个方程左边的表达式,代表的是系统的结构
对于 零输入响应,它的初始状态的值,就是解方程的初值
Z2.6零状态响应
零状态响应的解法是齐次解+特解
提醒:写出t>0可以简化方程右边
Z2.7 响应分类
1.固有响应和强迫响应
可以用齐次解和特解区分
2.暂态响应和稳态响应
对四个响应的区分
Z2.8Matlab 求解系统的响应